Endpoints: (s, 2s) and (3s, 8s)
Midpoint: (2s, 5s)
Slope of line: 3/1
Slope of perpendicular line: -1/3
Perpendicular bisector equation: y-5s = -1/3(x-2s) => 3y = -x+17s
Perpendicular bisector equation in its general form: x+3y-17s = 0
Endpoints: (-2, 4) and (6, 8) Slope: 1/2 Perpendicular slope: -2 Midpoint: (2, 6) Perpendicular bisector equation: y = -2x+10
Endpoints: (-1, -6) and (5, -8) Midpoint: (2, -7) Slope: -1/3 Perpendicular slope: 3 Perpendicular bisector equation: y - -7 = 3(x -2) => y = 3x -13
Endpoints: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular bisector equation: 3y = -x+17s or as x+3y-17s = 0
Converse of the Perpendicular Bisector Theorem - if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.Example: If DA = DB, then point D lies on the perpendicular bisector of line segment AB.you :))
8
Endpoints: (-2, 4) and (6, 8) Slope: 1/2 Perpendicular slope: -2 Midpoint: (2, 6) Perpendicular bisector equation: y = -2x+10
Endpoints: (2, 9) and (9, 2) Midpoint: (5.5, 5.5) Slope of line segment: -1 Perpendicular slope: 1 Perpendicular bisector equation: y-5.5 = 1(x-5.5) => y = x
Endpoints: (-1, -6) and (5, -8) Midpoint: (2, -7) Slope: -1/3 Perpendicular slope: 3 Perpendicular bisector equation: y - -7 = 3(x -2) => y = 3x -13
Endpoints: (-1, 3) and (-2, -5) Midpoint: (-3/2, -1) Slope: 8 Perpendicular slope: -1/8 Perpendicular bisector equation: y --1 = -1/8--3/2 => y = -1/8x -19/16
Endpoints: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular bisector equation: 3y = -x+17s or as x+3y-17s = 0
Converse of the Perpendicular Bisector Theorem - if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.Example: If DA = DB, then point D lies on the perpendicular bisector of line segment AB.you :))
8
The distance will be length of the line divided by 2 because the perpendicular bisector cuts through the line at its centre and at right angles
Endpoints: (-4, -10) and (8, -1) Midpoint: (2, -5.5) Slope: 3/4 Perpendicular slope: -4/3 Perpendicular equation: y --5.5 = -4/3(x-2) => 3y = -4x -8.5 Perpendicular bisector equation in its general form: 4x+3y+8.5 = 0
Endpoints: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: (-3--4)/(-7--1) = -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5
End points: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5
A) Midpoint Of A Line Segment B) Parallel Lines C) Angle Bisector D) Perpendicular Bisector