False.
False.
Chat with our AI personalities
The simplest example (of infinitely many) is probably the squareroot of two multiplied by itself equals two. Take any rational number, say 4.177 and divide it with any irrational number, say the square root of 13, and you will get a new irrational number. The product of your two irrational numbers now make a rational number.
Let A be a non-zero rational number and B be an irrational number and let A*B = C.Suppose their product C, is rational.Then, dividing both sides of the equation by A gives B = A/C.Now, since A and C are both rational, A/C must be rational.Therefore you have B (irrational) = A/C (irrational).Clearly, this is impossible and therefore the supposition must be wrong. That is to say, A*B cannot be ration or, it must be irrational.
In This Case, the answer is false and this is why in the case you have the Square root of 3, or (√3) To Approximate this, you come up with a number near to 1.7320508075688772935274463415059... and so on this is irrational because it is non-repeating, or you cannot simply make a fraction of it. But, if this where true, the you would be saying this 1.7320508075688772935274463415059=1.732=1.7.... and, in math, this is not true a more simple explanation would be that if you had 1/3 and 3/10, which would you say is bigger? 1/3 is bigger, and here is why 3/10=0.3 1/3=0.333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333...... and so on but, if you slap all of those 3's off there, it becomes 0.3, making it "rational", but incorrect. -Nick Ogre
There are an infinite number of integers that meet this criteria.Ans 2Root 2 and root 3 are both irrational, but there is no integer between them.Did you mean to say 'an infinite number of pairs of integers" ?
An irrational number is a number that can't be written as a fraction with whole numbers on top and bottom.An irrational number written as a decimal never ends. BUT, some rational numbersdo the same thing, so you can't say that just because the decimal never ends, itmust be an irrational number.Here are some rational numbers whose decimals never end:1/31/61/71/91/11