answersLogoWhite

0

You could draw a Probability Plot: "The probability plot ... is a graphical technique for assessing whether or not a data set follows a given distribution such as the normal or Weibull. "The data are plotted against a theoretical distribution in such a way that the points should form approximately a straight line. Departures from this straight line indicate departures from the specified distribution." Source: Online Engineering Statistics Handbook http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm

User Avatar

Wiki User

18y ago

What else can I help you with?

Continue Learning about Statistics

What is the Test for normal distribution?

Normal Distribution is a key to Statistics. It is a limiting case of Binomial and Poisson distribution also. Central limit theorem converts random variable to normal random variable. Also central limit theorem tells us whether data items from a sample space lies in an interval at 1%, 5%, 10% siginificane level.


The number of claims that an insurance company receives per week is a random variable with the Poisson distribution?

The Poisson distribution models the number of events occurring within a fixed interval of time or space, given that these events happen with a known constant mean rate and are independent of the time since the last event. In the context of an insurance company, the weekly number of claims can be represented by a Poisson random variable, where the parameter λ (lambda) indicates the average number of claims received per week. This distribution is particularly useful for predicting the likelihood of various claim counts, allowing the company to manage risk and set appropriate premiums.


How do you get the median of a continuous random variable?

You integrate the probability distribution function to get the cumulative distribution function (cdf). Then find the value of the random variable for which cdf = 0.5.


What is meant by probability distribution?

I will give first the non-mathematical definition as given by Triola in Elementary Statistics: A random variable is a variable typicaly represented by x that has a a single numerical value, determined by chance for each outcome of a procedure. A probability distribution is a graph, table or formula that gives the probabability for each value of the random variable. A mathematical definition given by DeGroot in "Probability and Statistics" A real valued function that is defined in space S is called a random variable. For each random variable X and each set A of real numbers, we could calculate the probabilities. The collection of all of these probabilities is the distribution of X. Triola gets accross the idea of a collection as a table, graph or formula. Further to the definition is the types of distributions- discrete or continuous. Some well know distribution are the normal distribution, exponential, binomial, uniform, triangular and Poisson.


What will be the sampling distribution of the mean for a sample size of one?

It will be the same as the distribution of the random variable itself.

Related Questions

Can the Poisson distribution be a continuous random variable or a discrete random variable?

True


If the outcomes of a random variable follow a Poisson distribution then their?

means equal the standard deviation


What is the probability that a Poisson random variable x is equal to 5...?

It depends on the parameter - the mean of the distribution.


What is the Probability density function of Poisson distribution?

If a random variable X has a Poisson distribution with parameter l, then the probability that X takes the value x isPr(X = x) = lx*e-l/x! for x = 0, 1, 2, 3, ...


What is the distribution of the sum of squared Poisson random variables?

You must pay for the answer


What is the Test for normal distribution?

Normal Distribution is a key to Statistics. It is a limiting case of Binomial and Poisson distribution also. Central limit theorem converts random variable to normal random variable. Also central limit theorem tells us whether data items from a sample space lies in an interval at 1%, 5%, 10% siginificane level.


What are the key considerations when implementing a C program that simulates a Poisson distribution?

When implementing a C program to simulate a Poisson distribution, key considerations include understanding the Poisson distribution formula, generating random numbers using a Poisson distribution, and ensuring the program accurately reflects the expected distribution outcomes. Additionally, it is important to validate the results of the simulation and optimize the program for efficiency.


Poisson distribution the mean and standard deviation?

The Poisson distribution is a discrete distribution, with random variable k, related to the number events. The discrete probability function (probability mass function) is given as: f(k; L) where L (lambda) is the mean and square root of lambda is the standard deviation, as given in the link below: http://en.wikipedia.org/wiki/Poisson_distribution


How do you compute the probability distribution of a function of two Poisson random variables?

we compute it by using their differences


The number of claims that an insurance company receives per week is a random variable with the Poisson distribution?

The Poisson distribution models the number of events occurring within a fixed interval of time or space, given that these events happen with a known constant mean rate and are independent of the time since the last event. In the context of an insurance company, the weekly number of claims can be represented by a Poisson random variable, where the parameter λ (lambda) indicates the average number of claims received per week. This distribution is particularly useful for predicting the likelihood of various claim counts, allowing the company to manage risk and set appropriate premiums.


Can the variance of a normally distributed random variable be negative?

No. The variance of any distribution is the sum of the squares of the deviation from the mean. Since the square of the deviation is essentially the square of the absolute value of the deviation, that means the variance is always positive, be the distribution normal, poisson, or other.


How do you get the median of a continuous random variable?

You integrate the probability distribution function to get the cumulative distribution function (cdf). Then find the value of the random variable for which cdf = 0.5.

Trending Questions
What does it mean when your stomach is getting so hard and I haven't had my period for 2 months now? How do you find the area of a storage box with the sides 6.3 inches 12.6 inches and 4.2 inches and turn it into square inches? How many ways can the letters in the word mathematica be arranged? What is the probability that the sum of the numbers from two rolled dice result in a perfect square or even number? A single die is rolled one time Find the probability of rolling a number that is odd and less than 4? If Tom gets a 70 on a physics test where the mean is 65 and the standard deviation is 5.8 where does he stand in relation to his classmates? Is 25 percent greater than 2.5 percent? If there is a correlation between Event A and Event B what can be a true statement? Why are circle graphs used? What does it mean if your mpv is 8.2? Is there a maximum number of data points that could be used on a graph? Differences between leaky bucket and token bucket? What are the disadvantages of a column graph? A bag contains 2 yellow 12 red and 6 green marbles What is the probability of selecting a red marble replacing it then selecting another red marble? What is the probability that the dealer will not get blackjack? How much did the Baby boom population increase? What is the average size of a paper towel? How many different arrangements can be made with the letters in the word Iowa? What is the intersection of assesed probability and severity of a hazard called in the crm? What is 20 over 30 as a percent?