33%
64/256
4/25
The probability of correct true & false question is 1/2 and the probability correct multiple choice (four answer) question is 1/4. We want the probability of correct, correct, and correct. Therefore the probability all 3 questions correct is 1/2 * 1/2 * 1/4 = 1/16.
This is abinomial distribution; number of trials (n) is 5, probability of success (p) is 1/4 or 0.25. With this information you can go to a Binomial Distribution Table and find the solution. Within the section of values for n=5 and p=.25, read from the section the probability of 4 which is 0.0146 (see related link for table).
5 out of 10
It is 0.0033
64/256
15%? (My math sucks - I probably got that wrong).
4/25
In a multiple-choice test with 4 options (a, b, c, d) for each question, the probability of guessing correctly for each question is ( \frac{1}{4} ). If a student guesses on 10 questions, the expected number of correct guesses can be calculated by multiplying the number of questions by the probability of a correct guess: ( 10 \times \frac{1}{4} = 2.5 ). Therefore, the mean expected correct guesses for the student is 2.5.
To find the probability of getting at least 6 correct answers on a 10-question multiple-choice exam where each question has 5 choices (with only one correct answer), we can model this situation using the binomial probability formula. The probability of guessing correctly on each question is ( p = \frac{1}{5} ) and incorrectly is ( q = \frac{4}{5} ). We need to calculate the sum of probabilities for getting exactly 6, 7, 8, 9, and 10 correct answers. Using the binomial formula, the probability ( P(X = k) ) for each ( k ) can be computed, and then summed to find ( P(X \geq 6) ). The resulting probability is approximately 0.0163, or 1.63%.
25
The probability of correct true & false question is 1/2 and the probability correct multiple choice (four answer) question is 1/4. We want the probability of correct, correct, and correct. Therefore the probability all 3 questions correct is 1/2 * 1/2 * 1/4 = 1/16.
This is abinomial distribution; number of trials (n) is 5, probability of success (p) is 1/4 or 0.25. With this information you can go to a Binomial Distribution Table and find the solution. Within the section of values for n=5 and p=.25, read from the section the probability of 4 which is 0.0146 (see related link for table).
5 out of 10
Each guess has a 25% chance of being correct and a 75% chance of being wrong. Guessing right or wrong on one question does not affect the odds on the next one.
The term probability is related to genetics because they both give guesses about how something that might be the outcome of something