To find the probability of getting at least 6 correct answers on a 10-question multiple-choice exam where each question has 5 choices (with only one correct answer), we can model this situation using the binomial probability formula. The probability of guessing correctly on each question is ( p = \frac{1}{5} ) and incorrectly is ( q = \frac{4}{5} ). We need to calculate the sum of probabilities for getting exactly 6, 7, 8, 9, and 10 correct answers. Using the binomial formula, the probability ( P(X = k) ) for each ( k ) can be computed, and then summed to find ( P(X \geq 6) ). The resulting probability is approximately 0.0163, or 1.63%.
That depends on how many questions there are, how many choices are listed for each question, and whether any obviously-stupid answers are included among the choices. If any of those factors changes, then the probability changes. One thing we can guarantee, however, even without knowing any of these factors: If you have studied the subject and know the material, then your probability of getting correct answers increases dramatically.
The probability of getting both answers correct is one chance in nine (0.1111+). There are three possible answers for each question, so there is a 1/3 chance of getting the correct answer to one question. To get the correct answer for both questions, the chances are 1/3 x 1/3 or 1/9.
If it is a T/F test; probability correct for each question is 0.5. Since there are 4 questions, raise 0.5 to the 4th power; e.g. (0.5)4. So, probability all correct is 0.0625. If a 4 part multiple choice, P(correct) = .25 so raise .25 to the 4th power, or .003906.
In a multiple-choice test with 4 options (a, b, c, d) for each question, the probability of guessing correctly for each question is ( \frac{1}{4} ). If a student guesses on 10 questions, the expected number of correct guesses can be calculated by multiplying the number of questions by the probability of a correct guess: ( 10 \times \frac{1}{4} = 2.5 ). Therefore, the mean expected correct guesses for the student is 2.5.
An Answer Key is typically used for multiple choice tests. So if each question has A through D choices, the Answer Key would list the question number and the correct choice for each question. e.g.CAand so on.
Not sure what a mulitple choice qustion is but if it is anything like a multiple choice question, it is 1/5 or 20%. I strongly advise you to get a dictionary, learn to spell or use a spell checker.
The answer depends on the number of choices available for each question.
Well they are independent events so it is the probability of getting a correct answer multiplied by the probability of getting a correct answer on the second question. Short Answer: 1/5 times 1/5=1/25
1/4, or 25% 25%, 1/4 A, 1/4B. 1/4C, 1/4 D
The probability of correct true & false question is 1/2 and the probability correct multiple choice (four answer) question is 1/4. We want the probability of correct, correct, and correct. Therefore the probability all 3 questions correct is 1/2 * 1/2 * 1/4 = 1/16.
Not sure what a mulitple choice qustion is but if it is anything like a multiple choice question, it is 1/5 or 20%. I strongly advise you to get a dictionary, learn to spell or use a spell checker.
4/25
You have a 4 percent chance of guessing both answers correctly assuming there is only one correct answer to each question and that you may only answer once per question.
That depends on how many questions there are, how many choices are listed for each question, and whether any obviously-stupid answers are included among the choices. If any of those factors changes, then the probability changes. One thing we can guarantee, however, even without knowing any of these factors: If you have studied the subject and know the material, then your probability of getting correct answers increases dramatically.
1/5 or 0.2
It is 1/5.
An answer stem is the part of a multiple-choice question that presents the initial information or prompt to which the answer choices are related. It typically poses a question or incomplete statement that the test-taker must respond to by selecting the correct answer choice.