that would be = 1/221
= (4/52)(4/51)(3/4)
Two cards are drawn from a pack of 52 cards second card is drawn after replacing the first card. What is the probability that the second card is a king?
The answer depends on how many cards are drawn, whether that is with or without replacement, whether the cards are drawn at random. If only one card is drawn, the probability is 0. If 51 cards are drawn, the probability is 1. If two cards are drawn, at random, and the first is not replaced, the probability is (2/52)*(1/51) = 2/2652 = 0.00075, approx.
The probability is 1/9.
If 2 cards are selected from a standard deck of 52 cards without replacement, in order to find the probability that both are the same suit, start with the first card...The probability that the first card is any suit is 52 in 52, or 1.Now, consider the second card. There are 12 cards remaining in the same suit, and 39 cards remaining in the other three suits...The probability that the second card is the same suit as the first card is 12 in 51, or 4 in 17, or 0.235.The probability of both events occurring is the product of those two probabilities. That is still 4 in 17, or 0.235.
What is the probability that the second tile you pick is yellow? (didnt have enough space to finish the question)
Two cards are drawn from a pack of 52 cards second card is drawn after replacing the first card. What is the probability that the second card is a king?
The answer depends on how many cards are drawn, whether that is with or without replacement, whether the cards are drawn at random. If only one card is drawn, the probability is 0. If 51 cards are drawn, the probability is 1. If two cards are drawn, at random, and the first is not replaced, the probability is (2/52)*(1/51) = 2/2652 = 0.00075, approx.
No, it is the same.
The probability is 1/9.
If 2 cards are selected from a standard deck of 52 cards without replacement, in order to find the probability that both are the same suit, start with the first card...The probability that the first card is any suit is 52 in 52, or 1.Now, consider the second card. There are 12 cards remaining in the same suit, and 39 cards remaining in the other three suits...The probability that the second card is the same suit as the first card is 12 in 51, or 4 in 17, or 0.235.The probability of both events occurring is the product of those two probabilities. That is still 4 in 17, or 0.235.
Assuming a pack consists of 52 cards as per normal. Initially half the cards are red. Probability that the first card drawn is red = 1/2. Now there are 25 red cards left out of 51 remaining cards. Probability that the second card drawn is red = 25/51. Probability that both cards drawn are red therfore = 1/2 * 25/51 = 25/102
The probability that two cards drawn from a deck of cards being an Ace followed by a King is 1 in 13 (for the Ace) times 4 in 51 (for the King) which is equal to 4 in 663.
What is the probability that the second tile you pick is yellow? (didnt have enough space to finish the question)
If you are drawing two cards from a full deck of cards (without jokers) then the probability will depend upon whether the the first card is replaced before the second is drawn, but the probability will also be different to being dealt a hand whilst playing Bridge (or Whist), which will again be different to being dealt a hand at Canasta. Without the SPECIFIC context of the two cards being got, I cannot give you a more specific answer.
The probability of drawing three black cards from a standard pack depends on:whether the cards are drawn at random,whether or not the drawn cards are replaced before the next card is drawn,whether the probability that is required is that three black cards are drawn after however many draws, or that three black cards are drawn in a sequence at some stage - but not necessarily the first three, or that the first three cards cards that are drawn are black.There is no information on any of these and so it is not possible to be certain about the answer.The probability of drawing three black cards, in three random draws - without replacement - from a standard deck, is 0.1176 approx.
The probability that the first card is a jack is 4 in 52. The probability that the second card is 1 ten is 4 in 51. Since these are sequential events, simply multiply, giving (4/52)(4/51) or (16/2652) or about 0.00603.
The probability of drawing the first face card is 12 in 52. The probability of drawing the second is 11 in 51. The probability of drawing the third is 10 in 50. Thus, the probability of drawing three face cards is (12 in 52) times (11 in 51) times (10 in 50) or (1320 in 132600) or about 0.009955.