It is approx 0.1445
The probability of getting at least 1 tails is (1 - probability of getting all heads) The probability of getting all heads (no tails) is ½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ = 1/256 = 0.00390625 so the probability of getting at least ONE tails is 1-0.30390625 = 0.99609375 = 255/256
As the question is "what is the probability of getting at least one head" the correct way to answer this is to ask what is the probability of not getting any heads and then subtract this from 1.The probability of not getting a head in 4 flips = 0.54 (i.e. 0.5 * 0.5 * 0.5 * 0.5) = 1/16.Therefore the probability of getting at least one head is 1 - 1/16 = 15/16.
The probability of obtaining 7 heads in eight flips of a coin is:P(7H) = 8(1/2)8 = 0.03125 = 3.1%
There are 23 or 8 possible outcomes listed below (H=Head, T=Tails). HHH HHT HTH HTT THH THT TTH TTT each has a 1/8 probability. Count the number that has at least 2 heads and it is 3. So, the probability is 3/8.
The probability of getting at least 1 answer correct = 1 - Probability of getting all answers correct.So in your case it for be P(at least 1 answer correct) = 1 - 1/256where 256 is your sample space, |S| = 2^8.
The probability of getting at least 1 tails is (1 - probability of getting all heads) The probability of getting all heads (no tails) is ½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ = 1/256 = 0.00390625 so the probability of getting at least ONE tails is 1-0.30390625 = 0.99609375 = 255/256
To calculate the probability of getting at least four heads when flipping a coin six times, we can use the binomial probability formula. The total number of outcomes for six flips is (2^6 = 64). The probabilities for getting exactly four, five, and six heads can be calculated using the binomial formula, and their sum gives the total probability of getting at least four heads. This results in a probability of approximately 0.65625, or 65.625%.
As the question is "what is the probability of getting at least one head" the correct way to answer this is to ask what is the probability of not getting any heads and then subtract this from 1.The probability of not getting a head in 4 flips = 0.54 (i.e. 0.5 * 0.5 * 0.5 * 0.5) = 1/16.Therefore the probability of getting at least one head is 1 - 1/16 = 15/16.
.125
The probability of getting at least one tail in a flip of six coins is the same as the probability of not getting all heads, which is 1 - (0.56), or 0.984375.
The probability of obtaining 7 heads in eight flips of a coin is:P(7H) = 8(1/2)8 = 0.03125 = 3.1%
7/8
For 3 coin flips: 87% chance of getting heads at least once 25% chance of getting heads twice 13% chance of getting heads all three times
To find the probability of getting at least one head in 4 coin tosses, it's easier to calculate the complementary probability of getting no heads at all (i.e., getting all tails). The probability of getting tails in a single toss is 0.5, so for 4 tosses, the probability of all tails is ( (0.5)^4 = 0.0625 ). Therefore, the probability of getting at least one head is ( 1 - 0.0625 = 0.9375 ) or 93.75%.
Probability of no heads = (0.5)^5 = 0.03125Probability of at least one head = 1 - probability of no heads = 1 - 0.03125 = 0.96875
The probability of tossing a coin 9 times and getting at least one tail is: P(9 times, at least 1 tail) = 1 - P(9 heads) = 1 - (0.50)9 = 0.9980... ≈ 99.8%
00