answersLogoWhite

0

They do happen, particularly with very skewed distributions.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine

Add your answer:

Earn +20 pts
Q: Measurements that fall beyond 3 standard deviations from the mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is the measures that fall beyond three standard deviations of the mean called?

You may be referring to the statistical term 'outlier(s)'. Also, there is a rule in statistics called the '68-95-99 Rule'. It states that in a normally distributed dataset approximately 68% of the observations will be within plus/minus one standard deviation of the mean, 95% within plus/minus two standard deviations, and 99% within plus/minus three standard deviations. So if your data follow the classic bell-shaped curve, roughly 1% of the measures should fall beyond three standard deviations of the mean.


What are measurements called that fall beyond three standard deviations from the mean?

Measurements. Just because a particular result lies far from the mean doesn't make it any different. If it's noticeably far from the "crowd" of all the other measurements, it can be called an outlier. An outlier isn't necessarily bad, just different. It should be examined in detail to see if there's something odd about it, but not discarded out of hand.


What percentage of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution?

99.7% of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution.


Number of measurements that fall into each class?

This is a question on a statistics puzzle. Yes, it is for a puzzle. What is the answer?


What is the difference between Chebyshevs inequality and empirical rule in terms of skewness?

Chebyshev's inequality: The fraction of any data set lying within K standard deviations is always at least 1-1/K^2 where K is any positive number greater than 1. It does not assume that any distribution. Now, there is the empirical rule of bell shaped curves or the 68-95-99.7 rule, which states that for a bell shaped curve: 68% of all values should fall within 1 standard deviation, 95% of all values should fall within 2 standard deviations and 99.7% of all values should fall within 3 standard deviation. If we suspect that our data is not bell shaped, but right or left skewed, the above rule can not be applied. I note that one test of skewness is Pearson's index of skewness, I= 3(mean of data - median of data)/(std deviation) If I is greater or equal to 1000 or I is less than 1, the data can be considered significantly skewed. I hope this answers your question. I used the textbook Elementary Statistics by Triola for the information on Pearson's index. If this answer is insufficient, please resubmit and be a bit more definitive on what you mean by empirical rule.