The answer will depend on the distribution of the variable.
68.2%
A standard deviation is a statistical measure of the variation there in a population or group. A standard deviation of 1 means that 68% of the members of the population are withing plus or minus the value of the standard deviation from the average. For example: assume the average height of men is 5 feet 9 inches, and the standard deviation is three inches. Then 68% of all men are between 5' 6" and 6' which is 5'9" plus or minus 3 inches. [Note: this is only to illustrate and is not intended to be a real/correct statistic of men's heights.]
The standard deviation.z-score of a value=(that value minus the mean)/(standard deviation)
z-score of a value=(that value minus the mean)/(standard deviation)
When you subtract the standard deviation from the mean, you get a value that represents one standard deviation below the average of a dataset. This can be useful for identifying lower thresholds in data analysis, such as determining the cutoff point for values that are considered below average. In a normal distribution, approximately 68% of the data falls within one standard deviation of the mean, so this value can help in understanding the spread of the data.
The 68-95-99.7 rule, or empirical rule, says this:for a normal distribution almost all values lie within 3 standard deviations of the mean.this means that approximately 68% of the values lie within 1 standard deviation of the mean (or between the mean minus 1 times the standard deviation, and the mean plus 1 times the standard deviation). In statistical notation, this is represented as: μ ± σ.And approximately 95% of the values lie within 2 standard deviations of the mean (or between the mean minus 2 times the standard deviation, and the mean plus 2 times the standard deviation). The statistical notation for this is: μ ± 2σ.Almost all (actually, 99.7%) of the values lie within 3 standard deviations of the mean (or between the mean minus 3 times the standard deviation and the mean plus 3 times the standard deviation). Statisticians use the following notation to represent this: μ ± 3σ.(www.wikipedia.org)
68.2%
To calculate plus or minus one standard deviation from a mean, first determine the mean (average) of your data set. Then calculate the standard deviation, which measures the dispersion of the data points around the mean. Once you have both values, you can find the range by adding and subtracting the standard deviation from the mean: the lower limit is the mean minus one standard deviation, and the upper limit is the mean plus one standard deviation. This range contains approximately 68% of the data in a normal distribution.
A standard deviation is a statistical measure of the variation there in a population or group. A standard deviation of 1 means that 68% of the members of the population are withing plus or minus the value of the standard deviation from the average. For example: assume the average height of men is 5 feet 9 inches, and the standard deviation is three inches. Then 68% of all men are between 5' 6" and 6' which is 5'9" plus or minus 3 inches. [Note: this is only to illustrate and is not intended to be a real/correct statistic of men's heights.]
It is the Standard normal variable.
Formally, the standard deviation is the square root of the variance. The variance is the mean of the squares of the difference between each observation and their mean value. An easier to remember form for variance is: the mean of the squares minus the square of the mean.
The standard deviation.z-score of a value=(that value minus the mean)/(standard deviation)
z-score of a value=(that value minus the mean)/(standard deviation)
z-score of a value=(that value minus the mean)/(standard deviation)
z-score of a value=(that value minus the mean)/(standard deviation)
in a normal distribution, the mean plus or minus one standard deviation covers 68.2% of the data. If you use two standard deviations, then you will cover approx. 95.5%, and three will earn you 99.7% coverage
It is 95%