It is a certainty if you pick 5 cards.
The probability of drawing the first ace is 4 in 52. The probability of getting the second ace is 3 in 51. The probability of getting the third ace is 2 in 50. The probability, then, of drawing three aces is (4 in 52) times (3 in 51) times (2 in 50), which is 24 in 132600, or 1 in 5525, or about 0.0001810
hypergeometric distribution f(k;N,n,m) = f(3;52,4,3)
Red cards will be a 1/3 chance to pick out of three cards .
The probability of drawing three black cards from a standard pack depends on:whether the cards are drawn at random,whether or not the drawn cards are replaced before the next card is drawn,whether the probability that is required is that three black cards are drawn after however many draws, or that three black cards are drawn in a sequence at some stage - but not necessarily the first three, or that the first three cards cards that are drawn are black.There is no information on any of these and so it is not possible to be certain about the answer.The probability of drawing three black cards, in three random draws - without replacement - from a standard deck, is 0.1176 approx.
The probability of drawing three black cards one at a time with replacement from a standard deck of 52 cards is 1/3x1/2x26/52, which is 0.833.
The probability of getting two pairs in a standard deck of playing cards is higher than the probability of getting three of a kind.
The probability of drawing the first ace is 4 in 52. The probability of getting the second ace is 3 in 51. The probability of getting the third ace is 2 in 50. The probability, then, of drawing three aces is (4 in 52) times (3 in 51) times (2 in 50), which is 24 in 132600, or 1 in 5525, or about 0.0001810
hypergeometric distribution f(k;N,n,m) = f(3;52,4,3)
Red cards will be a 1/3 chance to pick out of three cards .
One out of three
The probability of drawing three black cards from a standard pack depends on:whether the cards are drawn at random,whether or not the drawn cards are replaced before the next card is drawn,whether the probability that is required is that three black cards are drawn after however many draws, or that three black cards are drawn in a sequence at some stage - but not necessarily the first three, or that the first three cards cards that are drawn are black.There is no information on any of these and so it is not possible to be certain about the answer.The probability of drawing three black cards, in three random draws - without replacement - from a standard deck, is 0.1176 approx.
It is 0.077, approx.
The probability of drawing two blue cards froma box with 3 blue cards and 3 white cards, with replacement, is 1 in 4, or 0.25.The probability of drawing one blue card is 0.5, so the probability of drawing two is 0.5 squared, or 0.25.
The probability of drawing three black cards one at a time with replacement from a standard deck of 52 cards is 1/3x1/2x26/52, which is 0.833.
Since the probability of getting tails is 50% or 0.5, the probability of three tails would be 0.5*0.5*0.5=0.125 or 12.5 %
The answer depends on the numbers on the cards in the bag!
The probability is 0.0322