Approx 0.0027
The answer is 0.1586
There is not enough information about the the distribution of the number of people known by each individual - nor the averages. It is therefore no possible to give an answer any more precise than "the probability will be infinitesimally small".
Non probability sampling is where the samples are not selected randomly.
The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.
The answer will depend on what the disease is.
The answer is 0.1586
There is not enough information about the the distribution of the number of people known by each individual - nor the averages. It is therefore no possible to give an answer any more precise than "the probability will be infinitesimally small".
Non probability sampling is where the samples are not selected randomly.
To find the probability of a randomly selected woman having a height within a specific range, we can use the normal distribution with the given mean (μ = 63.6 inches) and standard deviation (σ = 2.1 inches). For instance, if we want to find the probability that a randomly selected woman is shorter than 65 inches, we would calculate the z-score using the formula ( z = \frac{(X - \mu)}{\sigma} ), where ( X ) is the height in question. After calculating the z-score, we would consult the standard normal distribution table or use a calculator to find the corresponding probability. If you have a specific height range in mind, please specify for a more detailed calculation.
0.9699
It depends on what the random variable is, what its domain is, what its probability distribution function is. The probability that a randomly selected random variable has a value between 40 and 60 is probably quite close to zero.
To find the probability of a randomly selected applicant receiving a credit rating above a certain value, you would first need to determine that value. For example, if you want to find the probability of an applicant having a rating above 250, you would calculate the z-score using the formula ( z = \frac{(X - \mu)}{\sigma} ), where ( X ) is the rating, ( \mu ) is the mean (200), and ( \sigma ) is the standard deviation (50). After calculating the z-score, you can use the standard normal distribution table or a calculator to find the corresponding probability.
The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.The answer depends on the demography of the population from which the person is randomly selected.
15 19
The answer will depend on what the disease is.
10/12
85/500 = 17%