The range is 12 and the standard deviation is 3.822448314.
The mean absolute deviation is 2
A large standard deviation indicates that the distribution is heavily weighted far from the mean. Take the following example: {1,1,1,1,1,19,19,19,19,19} Mean is 10 and StDev = 9.49 Now look at this data set: {5, 6, 7, 8, 9, 11, 12, 13, 14, 15} Mean is still 10, but StDev = 3.5
(10, 12, 12, 13, 13)
The purpose of obtaining the standard deviation is to measure the dispersion data has from the mean. Data sets can be widely dispersed, or narrowly dispersed. The standard deviation measures the degree of dispersion. Each standard deviation has a percentage probability that a single datum will fall within that distance from the mean. One standard deviation of a normal distribution contains 66.67% of all data in a particular data set. Therefore, any single datum in the data has a 66.67% chance of falling within one standard deviation from the mean. 95% of all data in the data set will fall within two standard deviations of the mean. So, how does this help us in the real world? Well, I will use the world of finance/investments to illustrate real world application. In finance, we use the standard deviation and variance to measure risk of a particular investment. Assume the mean is 15%. That would indicate that we expect to earn a 15% return on an investment. However, we never earn what we expect, so we use the standard deviation to measure the likelihood the expected return will fall away from that expected return (or mean). If the standard deviation is 2%, we have a 66.67% chance the return will actually be between 13% and 17%. We expect a 95% chance that the return on the investment will yield an 11% to 19% return. The larger the standard deviation, the greater the risk involved with a particular investment. That is a real world example of how we use the standard deviation to measure risk, and expected return on an investment.
The answer is 9.1
3.898717738 is the standard deviation.
It is 3.045
49.30179172 is the standard deviation and 52 is the mean.
The mean absolute deviation is 2
For 6 7 7 12 12 11 9 9 8 4 6 13 14: σ=3.0947
It is approx 2.828
A large standard deviation indicates that the distribution is heavily weighted far from the mean. Take the following example: {1,1,1,1,1,19,19,19,19,19} Mean is 10 and StDev = 9.49 Now look at this data set: {5, 6, 7, 8, 9, 11, 12, 13, 14, 15} Mean is still 10, but StDev = 3.5
(10, 12, 12, 13, 13)
(10, 12, 12, 13, 13)
The purpose of obtaining the standard deviation is to measure the dispersion data has from the mean. Data sets can be widely dispersed, or narrowly dispersed. The standard deviation measures the degree of dispersion. Each standard deviation has a percentage probability that a single datum will fall within that distance from the mean. One standard deviation of a normal distribution contains 66.67% of all data in a particular data set. Therefore, any single datum in the data has a 66.67% chance of falling within one standard deviation from the mean. 95% of all data in the data set will fall within two standard deviations of the mean. So, how does this help us in the real world? Well, I will use the world of finance/investments to illustrate real world application. In finance, we use the standard deviation and variance to measure risk of a particular investment. Assume the mean is 15%. That would indicate that we expect to earn a 15% return on an investment. However, we never earn what we expect, so we use the standard deviation to measure the likelihood the expected return will fall away from that expected return (or mean). If the standard deviation is 2%, we have a 66.67% chance the return will actually be between 13% and 17%. We expect a 95% chance that the return on the investment will yield an 11% to 19% return. The larger the standard deviation, the greater the risk involved with a particular investment. That is a real world example of how we use the standard deviation to measure risk, and expected return on an investment.
13 ft ......... Standard Width in Rolls is 12, 13, and finally 15 foot. 12 is the most common, 15 second and finally 13 foot widths.
mean = 11ftstandard deviation = 1.6ftx=13z= 13-11 = 1.251.6P(0