answersLogoWhite

0

You use it when the relationship between the two variables of interest is linear. That is, if a constant change in one variable is expected to be accompanied by a constant [possibly different from the first variable] change in the other variable.

Note that I used the phrase "accompanied by" rather than "caused by" or "results in". There is no need for a causal relationship between the variables.

A simple linear regression may also be used after the original data have been transformed in such a way that the relationship between the transformed variables is linear.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine

Add your answer:

Earn +20 pts
Q: When would you use simple linear regression?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

Is the line of best fit the same as linear regression?

Linear Regression is a method to generate a "Line of Best fit" yes you can use it, but it depends on the data as to accuracy, standard deviation, etc. there are other types of regression like polynomial regression.


How does a linear regression allow us to better estimate trends costs and other factors in complex situations?

You question is how linear regression improves estimates of trends. Generally trends are used to estimate future costs, but they may also be used to compare one product to another. I think first you must define what linear regression is, and what the alternative forecast methods exists. Linear regression does not necessary lead to improved estimates, but it has advantages over other estimation procesures. Linear regression is a mathematical procedure that calculates a "best fit" line through the data. It is called a best fit line because the parameters of the line will minimizes the sum of the squared errors (SSE). The error is the difference between the calculated dependent variable value (usually y values) and actual their value. One can spot data trends and simply draw a line through them, and consider this a good fit of the data. If you are interested in forecasting, there are many methods available. One can use more complex forecasting methods, including time series analysis (ARIMA methods, weighted linear regression, or multivariant regression or stochastic modeling for forecasting. The advantages to linear regression are that a) it will provide a single slope or trend, b) the fit of the data should be unbiased, c) the fit minimizes error and d) it will be consistent. If in your example, the errors from regression from fitting the cost data can be considered random deviations from the trend, then the fitted line will be unbiased. Linear regression is consistent because anyone who calculates the trend from the same dataset will have the same value. Linear regression will be precise but that does not mean that they will be accurate. I hope this answers your question. If not, perhaps you can ask an additional question with more specifics.


How can i use the word regression in a sentence?

Her regression is smoking.


What is an example sentence with the word regression?

i know the facts. What is the reason? For your Regression?


What is the normal probability plot of residuals?

When you use linear regression to model the data, there will typically be some amount of error between the predicted value as calculated from your model, and each data point. These differences are called "residuals". If those residuals appear to be essentially random noise (i.e. they resemble a normal (a.k.a. "Gaussian") distribution), then that offers support that your linear model is a good one for the data. However, if your errors are not normally distributed, then they are likely correlated in some way which indicates that your model is not adequately taking into consideration some factor in your data. It could mean that your data is non-linear and that linear regression is not the appropriate modeling technique.