answersLogoWhite

0

Assume the angle u takes place in Quadrant IV.

Let u = arctan(-12). Then, tan(u) = -12.

By the Pythagorean identity, we obtain:

sec(u) = √(1 + tan²(u))

= √(1 + (-12)²)

= √145

Since secant is the inverse of cosine, we have:

cos(u) = 1/√145

Therefore:

sin(u) = -√(1 - cos²(u))

= -√(1 - 1/145)

= -12/√145

Otherwise, if the angle takes place in Quadrant II, then sin(u) = 12/√145

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: Find the exact value of the expression sinarctan-12?
Write your answer...
Submit
Still have questions?
magnify glass
imp