cos(195) = -0.965925826289
To find the exact value of sin 255°, we can use the sine subtraction formula. Since 255° = 270° - 15°, we can express it as: [ \sin(255°) = \sin(270° - 15°) = \sin(270°) \cos(15°) - \cos(270°) \sin(15°. ] Knowing that (\sin(270°) = -1) and (\cos(270°) = 0), we have: [ \sin(255°) = -1 \cdot \cos(15°). ] Thus, the exact value of (\sin(255°) = -\cos(15°)).
negative one half
tan u/2 = sin u/1+cos u
The inexact value of tan 330 is -0.577350, to six significant places. The exact value cannot be represented as a single number because it is a non terminating decimal. To represent it exactly, consider that tan x is sin x over cos x, and that sin 330 is -0.5 and cos 330 is square root of 0.75. As a result, the exact value of tan 330 is -0.5 divided by square root of 0.75.
To find the cosine of an angle in degrees using a calculator, first ensure that the calculator is set to degree mode (not radians). Enter the angle in degrees, then press the "cos" button. The calculator will display the cosine value for that angle. For example, to find cos(60°), input 60, select "cos," and the result will be 0.5.
cos(195) = cos(180 + 15) = cos(180)*cos(15) - sin(180)*sin(15) = -1*cos(15) - 0*sim(15) = -cos(15) = -cos(60 - 45) = -[cos(60)*cos(45) + sin(60)*sin(45)] = -(1/2)*sqrt(2)/2 - sqrt(3)/2*sqrt(2)/2 = - 1/4*sqrt(2)*(1 + sqrt3) or -1/4*[sqrt(2) + sqrt(6)]
The exact value of (\cos(40.7^\circ)) is not a simple rational number or a well-known trigonometric value. To find its numerical approximation, you can use a calculator, which gives (\cos(40.7^\circ) \approx 0.7578). For precise applications, it's best to use a calculator or software that can compute trigonometric functions.
The exact value of (\tan 195^\circ) can be found using the tangent addition formula. Since (195^\circ) is in the third quadrant, where tangent is positive, we can express it as (\tan(180^\circ + 15^\circ)). This gives us (\tan 195^\circ = \tan 15^\circ), which is (\frac{\sin 15^\circ}{\cos 15^\circ}). Using the known values, (\tan 15^\circ = 2 - \sqrt{3}). Therefore, (\tan 195^\circ = 2 - \sqrt{3}).
negative one half
It is: cos(15) = (sq rt of 6+sq rt of 2)/4
tan u/2 = sin u/1+cos u
The radical answer is sqrt(3)/2. (0.86602540378443864676372317075294)
The inverse cos of 1 is equal to o degrees. You can find this answer by knowing what angle measurement has cos equal to a value of 1.
The exact value is an irrational number, and can't be written on paper with digits.0.34202 is less than 0.000042 percent wrong.Cos(70 deg) is an irrational number and it is impossible to give its exact value.
1.25
(-1-√3)/(2√2)
The inexact value of tan 330 is -0.577350, to six significant places. The exact value cannot be represented as a single number because it is a non terminating decimal. To represent it exactly, consider that tan x is sin x over cos x, and that sin 330 is -0.5 and cos 330 is square root of 0.75. As a result, the exact value of tan 330 is -0.5 divided by square root of 0.75.