sin 2θ = 2(sin θ)(cos θ)
cos 2θ = (cos θ)2 - (sin θ)2
cos 2θ = 2(cos θ)2 - 1
cos 2θ = 1 - 2(sin θ)2
tan 2θ = 2(tan θ)/[1 - (tan θ)2]
sin θ/2 = ±√[(1 - (cos θ))/2]
cos θ/2 = ±√[(1 + (cos θ))/2]
tan θ/2 = ±√[(1 - (cos θ))/(1 + (cos θ))] ; cos θ ≠ -1
tan θ/2 = [1 - (cos θ)]/(sin θ)
tan θ/2 = (sin θ)/[1 + (cos θ)]
Chat with our AI personalities
Use the trigonometric relations and identities.
these are the identities i need sinΘcosΘ=cosΘ sec^4Θ-tan^4Θ=sec²Θcsc²Θ (1+sec²Θ)/(1-secΘ)=(cosΘ-1)/(cosΘ)
Trigonometric identities are trigonometric equations that are always true.
They are true statements about trigonometric ratios and their relationships irrespective of the value of the angle.
All others can be derived from these and a little calculus: sin2x+cos2x=1 sec2x-tan2x=1 sin(a+b)=sin(a)cos(b)+sin(b)sin(a) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) eix=cos(x)+i*sin(x)