because its a fraction problem
In a trigonometric equation, you can work to find a solution set which satisfy the given equation, so that you can move terms from one side to another in order to achieve it (or as we say we operate the same things to both sides). But in a trigonometric identity, you only can manipulate separately each side, until you can get or not the same thing to both sides, that is to conclude if the given identity is true or false.
That means the same as solutions of other types of equations: a number that, when you replace the variable by that number, will make the equation true.Note that many trigonometric equations have infinitely many solutions. This is a result of the trigonometric functions being periodic.
Presumably this is a quadratic equation question in the form of 35x2+34x+8 = 0 35x2+34x+8 = 0 (7x+4)(5x+2) = 0 Answer: x = -7/4 or x = -2/5 Usually you can factorise a quadratic equation by trial and improvement but in this case it's quicker to use the quadratic equation formula.
Scientific fields that make use of trigonometry include: acoustics, architecture, astronomy , cartography, civil engineering, geophysics, crystallography, electrical engineering, electronics, land surveying and geodesy, many physical sciences, mechanical engineering, machining, medical imaging , number theory, oceanography, optics, pharmacology, probability theory, seismology, statistics, and visual perception. Various types of equations can be solved using trigonometry. For example, a linear difference equation or differential equation with constant coefficients has solutions expressed in terms of the eigenvalues of its characteristic equation; if some of the eigenvalues are complex, the complex terms can be replaced by trigonometric functions of real terms, showing that the dynamic variable exhibits oscillations. Similarly, cubic equations with three real solutions have an algebraic solution that is unhelpful in that it contains cube roots of complex numbers; again an alternative solution exists in terms of trigonometric functions of real terms.
A number that makes an equation true is its solution.
Use trigonometric identities to simplify the equation so that you have a simple trigonometric term on one side of the equation and a simple value of the other. Then use the appropriate inverse trigonometric or arc function.
It is an equation. It could be an algebraic equation, or a trigonometric equation, a differential equation or whatever, but it is still an equation.
A quadratic equation
A quadratic equation.
It makes a complex equation more manipuable.
Is a trigonometric equation which has infinitely many real solutions.
By knowing how to use the quadratic equation formula.
cross-multiplying
It is a trigonometric equation.
A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)A polynomial equation: ax4+ bx3+ cx2+ dx + e = 0A trigonometric equation: sin(3x+2) = 0 Combinations: cos(x3+ e2x) = ln(x)
In a trigonometric equation, you can work to find a solution set which satisfy the given equation, so that you can move terms from one side to another in order to achieve it (or as we say we operate the same things to both sides). But in a trigonometric identity, you only can manipulate separately each side, until you can get or not the same thing to both sides, that is to conclude if the given identity is true or false.
The discriminant