"Removable discontinuity" means the function is not defined at that point (it has a "hole"), but by changing the function definition at that single point, defining it to be certain value, it becomes continuous. "Irremovable discontinuity" means the function makes a sudden jump at that point. There are infinitely many functions like that; for example, you can set the function to be: f(x) is undefined at x = -2 f(x) = 0 for x < 2 (except for x = -2) f(x) = 1 for x > 2
A discontinuity of the first kind occurs when a function's limit does not exist at a specific point, while a discontinuity of the second kind happens when the function's value at a particular point is undefined or infinite. Discontinuities of the first kind can be classified as removable, jump, or infinite discontinuities, based on the behavior of the limit.
Which one is correct dG(x-0)-dG(x+0)=-1/p(t) or 1/p(t)
A continuous spectrum contains all the wavelengths. A discontinuous spectrum has stripes of specific colors and can be used to identify the elements making it
Jump Discontinuity
It's when a Basketball player dribbles the ball, stops briefly, and then resumes dribbling.
NPP+ is the text editor has a jump to percent through function.
the function of a frog is to help it jump around
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
the function of a frog is to help it jump around