You can draw any one of 80 different marbles.
Any one of 50 draws will be successful.
Probability of success = 50/80 = 0.625 = 62.5 %
The probability depends on:whether the cards are drawn randomly,how many cards are drawn, andwhether the cards are replaced before drawing the next card.If only 2 cards are drawn randomly, and without replacement, the probability is 0.00075 approximately.
The probability of drawing a queen or king, in a single randomly drawn card, is 2/13. The probability of drawing one when you draw 45 cards without replacement is 1. The probability of choosing has nothing t do with the probability of drawing the card. I can choose a king but fail to find one!
It is 5/52 for a single card, drawn randomly.
The answer depends onwhether the card(s) are drawn from a normal deck of playing cards,whether they are at random,how many cards are drawn,whether the cards are replaced before drawing the next card.Thus, if 49 cards are drawn without replacement from an ordinary deck, whether randomly or not, the probability is 1.For a single card drawn randomly, the probability is 1/13.The answer depends onwhether the card(s) are drawn from a normal deck of playing cards,whether they are at random,how many cards are drawn,whether the cards are replaced before drawing the next card.Thus, if 49 cards are drawn without replacement from an ordinary deck, whether randomly or not, the probability is 1.For a single card drawn randomly, the probability is 1/13.The answer depends onwhether the card(s) are drawn from a normal deck of playing cards,whether they are at random,how many cards are drawn,whether the cards are replaced before drawing the next card.Thus, if 49 cards are drawn without replacement from an ordinary deck, whether randomly or not, the probability is 1.For a single card drawn randomly, the probability is 1/13.The answer depends onwhether the card(s) are drawn from a normal deck of playing cards,whether they are at random,how many cards are drawn,whether the cards are replaced before drawing the next card.Thus, if 49 cards are drawn without replacement from an ordinary deck, whether randomly or not, the probability is 1.For a single card drawn randomly, the probability is 1/13.
13/52, or 1/4.
A bag of marbles contains 13 marbles. 5 Blue, 3 Yellow, 4 Green and 1 Red. Leave all answers as a ratio in lowest terms. 18 points On a single draw, what is the probability of drawing a yellow marble? What is the probability of not drawing a yellow marble? What are the odds in favor of drawing a blue marble? What is the probability of drawing a red or yellow marble? What is the probability of drawing a purple marble? If you had to bet on drawing a marble of a certain color what color would you not choose?
The theoretical probability of randomly drawing a green marble can be calculated by dividing the number of green marbles by the total number of marbles in the bag. In this case, there are 12 green marbles out of a total of 5 red marbles + 8 blue marbles + 12 green marbles, which is 25 marbles in total. Therefore, the theoretical probability of drawing a green marble is 12/25 or 48%.
the probablility of drawing a nine or clubs from all four randomly shuffled decks with 52 cards is 1 out of 7,311,616
There would be a 7/19 or 36.84% chance of drawing a blue marble from the bag.
Probability of drawing a heart: 1/4 Probability of drawing a club: 1/4 Probability of drawing a heart or a club: 1/4 + 1/4 = 2/4 = 1/2
Since the box contains 16 marbles, seven of them white, then the probability of drawing one white marble is 7/16. If you replace the marble and draw again, the probability of drawing another white marble is still 7/16. The net probability of drawing two white marbles, while replacing the first, is 49/256.
Probability of not drawing an ace equals one minus the probability of drawing an ace. The probability of drawing an ace is 4/52 or 1/13. So the probability of not drawing an ace on one draw is 1 - 1/13 or 12/13 or 0.9231 (92.31%).