Yes it can
Rational numbers are ratios of two integers (the second of which is not zero). They are important if any number needs to be divided into equal parts.
There are infinitely many rational numbers between any two rational numbers. And the cardinality of irrational numbers between any two rational numbers is even greater.
There are infinitely many rational numbers between any two consecutive rational numbers. This is because rational numbers can be expressed as fractions, and between any two fractions, an infinite number of other fractions can be found by taking the average of the two given fractions. Therefore, the set of rational numbers is dense, meaning there is no smallest gap between any two rational numbers.
The set of real numbers is divided into rational and irrational numbers. The two subsets are disjoint and exhaustive. That is to say, there is no real number which is both rational and irrational. Also, any real number must be rational or irrational.
There are more irrational numbers between any two rational numbers than there are rational numbers in total.
In between any two rational numbers there is an irrational number. In between any two Irrational Numbers there is a rational number.
In between any two rational numbers there is an irrational number. In between any two irrational numbers there is a rational number.
There are countably infinite (aleph-null) rational numbers between any two rational numbers.
There are [countably] infinite rational number between any two rational numbers. There is, therefore, no maximum.
Continuity is a characteristic of functions not of sets.The set of rational number is infinitely dense. This means that between any two rational numbers, no matter how close together, there are infinitely many rational numbers. And then, between any two of them these is an infinte number of rational numbers, and so on.But, in case that gives you any wrong ideas, between any two rational numbers there is an even higher order of infinity of irrational numbers. In that respect the number of gaps in the set of rational numbers (where the irrational numbers would be) is greater than the cardinality of rational numbers.Continuity is a characteristic of functions not of sets.The set of rational number is infinitely dense. This means that between any two rational numbers, no matter how close together, there are infinitely many rational numbers. And then, between any two of them these is an infinte number of rational numbers, and so on.But, in case that gives you any wrong ideas, between any two rational numbers there is an even higher order of infinity of irrational numbers. In that respect the number of gaps in the set of rational numbers (where the irrational numbers would be) is greater than the cardinality of rational numbers.Continuity is a characteristic of functions not of sets.The set of rational number is infinitely dense. This means that between any two rational numbers, no matter how close together, there are infinitely many rational numbers. And then, between any two of them these is an infinte number of rational numbers, and so on.But, in case that gives you any wrong ideas, between any two rational numbers there is an even higher order of infinity of irrational numbers. In that respect the number of gaps in the set of rational numbers (where the irrational numbers would be) is greater than the cardinality of rational numbers.Continuity is a characteristic of functions not of sets.The set of rational number is infinitely dense. This means that between any two rational numbers, no matter how close together, there are infinitely many rational numbers. And then, between any two of them these is an infinte number of rational numbers, and so on.But, in case that gives you any wrong ideas, between any two rational numbers there is an even higher order of infinity of irrational numbers. In that respect the number of gaps in the set of rational numbers (where the irrational numbers would be) is greater than the cardinality of rational numbers.
There are an infinite number of rational numbers between any two rational numbers.
There are infinitely many rational numbers between any two rational rational numbers (no matter how close).