Best Answer

In between any two rational numbers there is an irrational number. In between any two Irrational Numbers there is a rational number.

Study guides

☆☆☆

Q: Are more rational numbers than irrational numbers true or false?

Write your answer...

Submit

Still have questions?

Related questions

It is false.

In between any two rational numbers there is an irrational number. In between any two irrational numbers there is a rational number.

-- There's an infinite number of rational numbers. -- There's an infinite number of irrational numbers. -- There are more irrational numbers than rational numbers. -- The difference between the number of irrational numbers and the number of rational numbers is infinite.

Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.

No. There are infinitely many of both but the number of irrational numbers is an order of infinity greater than that for rational numbers.

Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)

Next to any rational number is an irrational number, but next to an irrational number can be either a rational number or an irrational number, but it is infinitely more likely to be an irrational number (as between any two rational numbers are an infinity of irrational numbers).

A rational number is one that can be expressed as the ratio of two integers. There are an infinite number of both rational and irrational numbers, but there are more irrational numbers than rational ones... infinitely more, in fact.

Infinitely many. In fact, between any two different real numbers, there are infinitely many rational numbers, and infinitely many irrational numbers. (More precisely, beth-zero rational numbers, and beth-one irrational numbers - that is, there are more irrational numbers than rational numbers in any such interval.)

No. In fact, there are infinitely more irrational numbers than there are rational numbers.

There are more irrational numbers between any two rational numbers than there are rational numbers in total.

No. Although there are infinitely many of either, there are more irrational numbers than rational numbers. The cardinality of the set of rational numbers is Ã€0 (Aleph-null) while the cardinality of the set of irrational numbers is 2Ã€0.

People also asked