answersLogoWhite

0

In between any two rational numbers there is an irrational number. In between any two Irrational Numbers there is a rational number.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: Are there more rational numbers than irrational numbers true or false?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the number of rational numbers between square root 3 and square root 5?

Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.Infinitely many. In fact, there are more irrational numbers between them than there are rational numbers.


How are rational and irrational numbers similar?

Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)


Which one is more irrational or rational?

You can choose an irrational number to be either greater or smaller than any given rational number. On the other hand, if you mean which set is greater: the set of irrational numbers is greater. The set of rational numbers is countable infinite (beth-0); the set of irrational numbers is uncountable infinite (more specifically, beth-1 - there are larger uncountable numbers as well).


Are there more rational number than irrational numbers?

There are more irrational numbers than rational numbers. The rationals are countably infinite; the irrationals are uncountably infinite. Uncountably infinite means that the set of irrational numbers has a cardinality known as the "cardinality of the continuum," which is strictly greater than the cardinality of the set of natural numbers which is countably infinite. The set of rational numbers has the same cardinality as the set of natural numbers, so there are more irrationals than rationals.


How many irrational numbers are between 1 and 10?

Infinitely many. In fact there are more irrational numbers between 1 and 10 than there are rational numbers - in total!