Not unless you have an infinite amount of time as there are an infinite amount of numbers that are solutions to an inequality.
because writing out all the solutions is not necessarliy a correct answer but a number line is and because graphing out also helps you get a mental image of the concept.
The question cannot be answered since it contains no inequality.
the solution for the inequality 4x + 2 - 6x < -1 was x < 3/2
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
The part that is shaded represents all the possible solutions. An inequality has solutions that are either left or righ, above or below or between two parts of a graph.
Check all of the inequalities.
so that you can easily tell what the answer is by extending the line on the graph instead of calculating it
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
I think that you are asking about the linear inequalities with two variables, so my answer is related to them. First, you have to draw the boundary line (be careful, if your inequality does not contain the equal sign, the boundary line will be a dashed line, because the points on the line are not solutions to the inequality), which divide the coordinate system in two half-planes. Second, you have to test a point on either sides of the line (the best point is the origin, (0, 0), if it is not on the boundary line). If that point satisfies the inequality, then there are all its solutions, otherwise they are to the opposite side.
Although there are similarities, the solutions to a linear equation comprise all points on one line: a one-dimensional object. The solutions to a linear inequality comprise all points on one side [or the other] of a line: a two-dimensional object.
Tan x is negative or zero for all x between (pi/2, pi] and all odd multiples of that interval, i.e. (3pi/2, 2pi], etc.