sin(z)= (e^(i*z)-e^(-i*z))/(2*i) where i=(-1)^(1/2)
Eulers number Approx x^2.31
sine 810 = sine 90 = 1
Sine(A+ B) = Sine(A)*Cosine(B) + Cosine(A)*Sine(B).
Sine 3.3 degrees is about 0.057564. Sine 3.3 radians is about -0.157746. Sine 3.3 grads is about 0.051813.
sine 45 = 0.850903525
Kathrin Eulers has written: 'Frauen im Wahlrecht'
Trig identity... sin/cos = tangent
no
cool
http://en.wikipedia.org/wiki/Euler_angles
why is eulers constant important
It's about ponis and viagra.
Eulers number Approx x^2.31
The cofunction identity for cosine states that the cosine of an angle is equal to the sine of its complement. Specifically, this can be expressed as (\cos(t) = \sin\left(\frac{\pi}{2} - t\right)) in radians or (\cos(t) = \sin(90^\circ - t)) in degrees. This relationship highlights the complementary nature of the sine and cosine functions.
Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]
sine 810 = sine 90 = 1
It is given that name because of eulers work with e