answersLogoWhite

0

The cofunction identity for cosine states that the cosine of an angle is equal to the sine of its complement. Specifically, this can be expressed as (\cos(t) = \sin\left(\frac{\pi}{2} - t\right)) in radians or (\cos(t) = \sin(90^\circ - t)) in degrees. This relationship highlights the complementary nature of the sine and cosine functions.

User Avatar

AnswerBot

3d ago

What else can I help you with?

Related Questions

How do you solve the following identity sec x - cos x equals sin x tan x?

sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.


What is the cofunction of sin 30 degree?

cos 60


Show that cos3t equals 4cos cubed t - 3cos t?

cos(3t) = cos(2t + t) = cos(2t)*cos(t) - sin(2t)*sin(t) = [cos2(t) - sin2(t)]*cos(t) - 2*cos(t)*sin(t)*sin(t) = [cos2(t) - sin2(t)]*cos(t) - 2*cos(t)*sin2(t) then, since sin2(t) = 1 - cos2(t) = [2*cos2(t) - 1]*cos(t) - 2*cos(t)*[1 - cos2(t)] = 2*cos3(t) - cos(t) - 2*cos(t) + 2*cos3(t) = 4*cos3(t) - 3*cos(t)


What is cos theta minus cos theta times sin squared theta?

cos(t) - cos(t)*sin2(t) = cos(t)*[1 - sin2(t)] But [1 - sin2(t)] = cos2(t) So, the expression = cos(t)*cos2(t) = cos3(t)


What is the identity for tan theta?

The identity for tan(theta) is sin(theta)/cos(theta).


Synchronization techniques in DSBSC system?

Case 1 -Frequency errorMultiplierMultiplierLow passfilterLow passfilter Message signalDSB-SCLocal oscillatorc(t)=Eccos([ct+([)Local oscillatorc(t)=Eccos([ct+([)Condition:Local oscillator has the samephasebutdifferentfrequencycompared to carrier signal at thetransmitter.[m2[c+[m2[c-[mLow pass filterhigh frequencyinformation)(cos]cos)([)([([[t t t mtycc)2(cos)(cos)()(cos)()2(cos)()(21212121[([[(![([([!t t t t t t tycc[(!cos)()(21t t v


What are the sum and difference identities for the sine cosine and tangent functions?

Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]


Cos x sin x identity?

cos(x) = sin(pi/2 + x)


How do you verify the identity of cos θ tan θ equals sin θ?

To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED


What is cos 360 minus theta?

Cos(360 - X) = Trig. Identity Cos(360)Cos(x) + Sin(360)Sin(x) => 1CosX + 0Sinx => CosX + o => CosX


Is cos 2 x sec x equals 2 cos x - sec x an identity?

Yes, it is. the basic identity is for a double angle relation: cos 2x = 2 cosx cos x -1 since sec x =1/cos x if we multiply both sides by sec x we get cos2xsec x = 2cosxcos x/cos x -1/cos x = 2cos x - sec x


Sine divided by cosine?

Trig identity... sin/cos = tangent