It is not, so the question is incorrect.
x*x1/2= x3/2 Derivative = 3/2 * x1/2
If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)
Write square root of x as x1/2. Then use the formula for the derivative of a power.
The derivative of ( x1/2 ) with respect to 'x' is [ 1/2 x-1/2 ], or 1/[2sqrt(x)] .
Use: √x = x1/2 By the Power Rule (Decrease the power by 1. Multiply by the original power.): d/dx √x = d/dx x1/2 = 1/2 x-1/2
-1
Suppose you have a differentiable function of x, f(x) and you are seeking the root of f(x): that is, a solution to f(x) = 0.Suppose x1 is the first approximation to the root, and suppose the exact root is at x = x1+h : that is f(x1+h) = 0.Let f'(x) be the derivative of f(x) at x, then, by definition,f'(x1) = limit, as h tends to 0, of {f(x1+h) - f(x1)}/hthen, since f(x1+h) = 0, f'(x1) = -f(x1)/h [approx] or h = -f'(x1)/f(x1) [approx]and so a better estimate of the root is x2 = x1 + h = x1 - f'(x1)/f(x1).
Explain the derivative functions of money?
sqr.rtx/x= sqrt.x*sqr.rtx/sqr.rtx=x/x*sqrt.x=1/sqrt.x. x1/2 = x1/2 * x1/2 = x = 1 (x1/2) /x= 1/x1/2
To find the derivatve of the square root of cos x: Use the chain rule; this means multiply the inner derivative by the outer derivative. You can write the question f(x) = (cos x)1/2 This general break-down explains how to find d/dx f(x) note: d/dx basically symbolizes "the derivative of" In general terms: f(x) = x1/2 g(x) = cos x f(g(x)) = (cos x)1/2 outer derivative: d/dx f(z) = (1/2)*x-1/2 = 1/(4cos x)1/2 inner derivative: d/dx g(x) = -sin(x) final answer: d/dx f(g(x)) = -sin(x)/(4*cos x)1/2 note: d/dx means "the derivative of"; so d/dx x = 1 Further explained: Set up the equation to a more general form: (cos x)1/2 To make the inner derivative, look at cos(x) To make the outer derivative, look at x1/2 note: x ~ cos x; so we treat (cos x) simply as x, to create the outer derivative You probably know the necessary derivates: 1. derivative of cos x = -sin x 2. derivative of a1/2 = (1/2)*a-1/2 = 1/(4a)1/2 Multiplying the two we get the answer: -sin(x)/(4cos x)1/2
For a straight line, if A = (x1 , y1) and B = (x2 , y2) are any two points on the line, then the slope is (y2 - y1)/(x2 - x1) provided x2 is not the same as x1. More generally, if the equation is y = f(x) then the rate of change in y is dy/dx or f'(x), the derivative of the function f(x).
The derivative of a function is another function that represents the slope of the first function, slope being the limit of delta y over delta x at any two points x1,y1 and x2,y2 on the graph of the function as delta x approaches zero.