answersLogoWhite

0

here is the graph

User Avatar

shiannhazi

Lvl 2
3y ago

What else can I help you with?

Related Questions

How many unique roots will a third degree polynomial function have?

It can have 1, 2 or 3 unique roots.


How many roots will a fifth-degree polynomial function have?

A fifth-degree polynomial function will have exactly five roots, counting multiplicities. This means that some of the roots may be repeated or complex, but the total number of roots, including these repetitions, will always equal five. If the polynomial has real coefficients, some of the roots may also be non-real complex numbers, which occur in conjugate pairs.


At most how many unique roots will a fourth-degree polynomial have?

According to the rational root theorem, which of the following are possible roots of the polynomial function below?F(x) = 8x3 - 3x2 + 5x+ 15


How many real roots will a 3rd degree polynomial have?

A third degree polynomial could have one or three real roots.


At most how many unique roots will a fourth degree polynomial have?

4, the same as the degree of the polynomial.


Is it true that the degree of polynomial function determine the number of real roots?

Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)


At most how many unique roots will a third-degree polynomial have?

A third-degree equation has, at most, three roots. A fourth-degree polynomial has, at most, four roots. APEX 2021


How many x-intercepts does a quartic polynomial function having 4 distinct real roots have?

Each distinct real root is an x-intercept. So the answer is 4.


At most, how many unique roots will a fourth-degree polynomial have?

Four.Four.Four.Four.


The polynomial 32 plus 4x plus 3 has how many roots?

1


At most how many unique roots will a fifth-degree polynomial have?

5, Using complex numbers you will always get 5 roots.


How many roots does the polynomial 3x5 2x3 3x have?

To find the roots of the polynomial (3x^5 + 2x^3 + 3x), we can factor out the common term, which is (x): [ x(3x^4 + 2x^2 + 3) = 0. ] This shows that (x = 0) is one root. The quartic polynomial (3x^4 + 2x^2 + 3) does not have real roots (as its discriminant is negative), meaning it contributes no additional real roots. Therefore, the polynomial has only one real root, which is (x = 0).