answersLogoWhite

0

4, the same as the degree of the polynomial.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Basic Math

How many real roots can a fourth degree polynomial have?

Upto 4. If the coefficients are all real, then it can have only 0, 2 or 4 real roots.


What is the relationship between the degree of a polynomial and the number of roots it has?

In answering this question it is important that the roots are counted along with their multiplicity. Thus a double root is counted as two roots, and so on. The degree of a polynomial is exactly the same as the number of roots that it has in the complex field. If the polynomial has real coefficients, then a polynomial with an odd degree has an odd number of roots up to the degree, while a polynomial of even degree has an even number of roots up to the degree. The difference between the degree and the number of roots is the number of complex roots which come as complex conjugate pairs.


How do you find the roots of a polynomial of graphed points?

Join the points using a smooth curve. If you have n points choose a polynomial of degree at most (n-1). You will always be able to find polynomials of degree n or higher that will fit but disregard them. The roots are the points at which the graph intersects the x-axis.


How do you find out the number of imaginary zeros in a polynomial?

Descartes' rule of signs (see related link) can help you determine the maximum number of real roots. If the polynomial is odd powered, then there will be at least one real root. Any even powered polynomial can be factored into a bunch of quadratics [though they may not be rational or even pretty], and any odd-powered polynomial can be factored into a bunch of quadratics and one linear (this one would have the real root). So the quadratics may have pairs of real or complex roots (having an imaginary component).To clarify, when I say complex, I'm referring to the fact that there will be an imaginary component to the root, because actually the real numbers is a subset of the set of complex numbers.The order of the polynomial will tell you how many roots it will have. If you can graph the polynomial, then you can see if it crosses the x axis. If it is a 5th order polynomial, and crosses the x axis 3 times, then there are 3 real roots (the other two roots are complex).


Are skew symmetric roots purely real or purely imaginary?

They can be either. If they are roots of a real polynomial then purely imaginary would be symmetric and only real roots can be skew symmetric.

Related Questions

How many unique roots will a fourth degree polynomial function have?

A fourth degree polynomial function can have up to four unique roots. However, the actual number of unique roots can be fewer, depending on the polynomial's coefficients and the nature of its roots. Roots can be real or complex, and some roots may be repeated (multiplicity). Thus, the number of unique roots can range from zero to four.


At most, how many unique roots will a fourth-degree polynomial have?

Four.Four.Four.Four.


At most how many unique roots will a third-degree polynomial have?

A third-degree equation has, at most, three roots. A fourth-degree polynomial has, at most, four roots. APEX 2021


At most how many unique roots would a polynomial have?

A polynomial of degree ( n ) can have at most ( n ) unique roots. This is due to the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, if all the roots are distinct, the maximum number of unique roots is equal to the degree of the polynomial.


At most how many unique roots will a fourth-degree polynomial have?

According to the rational root theorem, which of the following are possible roots of the polynomial function below?F(x) = 8x3 - 3x2 + 5x+ 15


How many unique roots will a third degree polynomial function have?

It can have 1, 2 or 3 unique roots.


How many unique roots are possible in a seventh-degree poloynomial function?

A seventh-degree polynomial function can have up to 7 unique roots, according to the Fundamental Theorem of Algebra. However, some of these roots may be complex or repeated, meaning the actual number of distinct roots can be fewer than 7. In total, the polynomial can have anywhere from 0 to 7 unique roots.


At most how many unique roots will a fifth-degree polynomial have?

5, Using complex numbers you will always get 5 roots.


What is the least degree of a polynomial with the roots 3 0 -3 and 1?

The polynomial P(x)=(x-3)(x-0)(x+3)(x-1) is of the fourth degree.


How many real roots can a fourth degree polynomial have?

Upto 4. If the coefficients are all real, then it can have only 0, 2 or 4 real roots.


How many real roots will a 3rd degree polynomial have?

A third degree polynomial could have one or three real roots.


What is the relationship between the degree of a polynomial and the number of roots it has?

In answering this question it is important that the roots are counted along with their multiplicity. Thus a double root is counted as two roots, and so on. The degree of a polynomial is exactly the same as the number of roots that it has in the complex field. If the polynomial has real coefficients, then a polynomial with an odd degree has an odd number of roots up to the degree, while a polynomial of even degree has an even number of roots up to the degree. The difference between the degree and the number of roots is the number of complex roots which come as complex conjugate pairs.