A third degree polynomial could have one or three real roots.
Chat with our AI personalities
3y2-5xyz yay i figured it out!!!!
Yes.
If the domain is infinite, any polynomial of odd degree has infinite range whereas a polynomial of even degree has a semi-infinite range. Semi-infinite means that either the range has a real minimum but no maximum (ie maximum = +infinity) or that it has a real maximum but no minimum (ie minimum = -infinity).
For a general polynominal, the cubic, quartic, and greater formulæ are too hellishly hard to work with, so you would need to plot the function or use Newton's/somesuch method to count the real roots by hand. If the polynomial has integral roots, you can use synthetic division to peel off the degrees to see if they factor wholely into binominals; then all roots will be real and explicit. Good luck:
The answer is two. Despite its name seems to suggest something to do with four, in a quadratic equation the unknown appears at most to the power of two and so is said to be of second degree. The theorem than pertains here is that the number of roots an equation has is equal to its degrees. However, some of the roots can be repeated - an nth degree equation need not have n different roots. Also the roots do not have to be real. However complex roots ( no real) come in pairs so an equation of odd degree must have at least one real root. A quadratic possibly has no real roots.