Best Answer

First, pull out a GCF, or a greatest common factor, x, and continue from there. So it'll be x(x^3-3x+2). Then it would be x(x^2-2)(x-1) and there you have it.

Q: How can you factor x4 - 3x2 plus 2x?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4

lim (x3 + x2 + 3x + 3) / (x4 + x3 + 2x + 2)x > -1From the cave of the ancient stone tablets, we cleared away several feet of cobwebs and unearthed"l'Hospital's" rule: If substitution of the limit results in ( 0/0 ), then the limit is equal to the(limit of the derivative of the numerator) divided by (limit of the derivative of the denominator).(3x2 + 2x + 3) / (4x3 + 3x2 + 2) evaluated at (x = -1) is:(3 - 2 + 3) / (-4 + 3 + 2) = 4 / 1 = 1

x4 + 2x3 - 9x2 + 18x = x(x3 + 2x2 - 9x + 18) which I do not think can be factorised further.

The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2

x4+6x3-2x-12 (x3-2)(x+6)

Related questions

2x2 x 3x2 = 6 x4 (2x)2 x (3x)2 = 36 x4

Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4

(x^2 - 2x + 2)(x^2 + 2x + 2)

lim (x3 + x2 + 3x + 3) / (x4 + x3 + 2x + 2)x > -1From the cave of the ancient stone tablets, we cleared away several feet of cobwebs and unearthed"l'Hospital's" rule: If substitution of the limit results in ( 0/0 ), then the limit is equal to the(limit of the derivative of the numerator) divided by (limit of the derivative of the denominator).(3x2 + 2x + 3) / (4x3 + 3x2 + 2) evaluated at (x = -1) is:(3 - 2 + 3) / (-4 + 3 + 2) = 4 / 1 = 1

x6 - 27 = (x2 - 3)*(x4 + 3x2 + 9) Danny rocks

4X + 2x = 1. Where x = 0.166666666666666666666666666666666666666 recurring.

It is: 1(x4+4y8) and can't be factored any further

The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2

x4 + 2x3 - 9x2 + 18x = x(x3 + 2x2 - 9x + 18) which I do not think can be factorised further.

x4+6x3-2x-12 (x3-2)(x+6)

(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40Râˆ´ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)

3x3 + 6x2 + x + 2 3x2 (x + 2) + (x + 2) (x + 2) (3x2 + 1) OR 3x3 + x + 6x2 + 2x (3x2 + 1) + 2 (3x2 + 1) (3x2 + 1) (x + 2) Check: (x + 2) (3x2 + 1) = 3x3 + x + 6x2 + 2 = 3x3 + 6x2 + x + 2 x3 - 3x2 - 4x + 12 x2 (x - 3) - 4 (x - 3) (x - 3) (x2 - 4) (x - 3) (x + 2) (x - 2) Check: (x - 3) (x + 2) (x - 2) = (x - 3) (x2 - 4) = x3 - 4x - 3x2 + 12= x3 - 3x2 - 4x + 12=== === x5 - x4 + 8x3 - 8x2 + 16x - 16 x4 (x - 1) + 8x2 (x - 1) + 16 (x - 1) (x - 1) (x4 + 8x2 + 16) (x - 1) (x2 + 4)(x2 + 4) (x - 1) (x2 + 4)2 Real Solution (x - 1) (x + 2i) (x - 2i) (x + 2i) (x - 2i) (x - 1) (x + 2i)2 (x - 2i)2 Check: (x - 1) (x + 2i)2 (x - 2i)2 = (x - 1) (x + 2i) (x - 2i) (x + 2i) (x - 2i) = (x - 1) (x2 + 2xi - 2xi - 4i2) (x2 + 2xi - 2xi - 4i2) = (x - 1) (x2 - 4(-1)) (x2 - 4(-1)) = (x - 1) (x2 + 4) (x2 + 4) = (x - 1) (x4 + 4x2 + 4x2 +16) = (x - 1) (x4 + 8x2 + 16) = x5 + 8x3 +16x - x4 - 8x2 - 16 = x5 - x4 + 8x3 - 8x2 + 16x - 16