It depends on the requirements or specifications of the line. Does it go through a specific point or points, does it have a specific gradient, etc.
First you draw a little line then you draw a p attached to the line
ab is a straight line in the plane p.
A reflection in a line l is a correspondence that pairs each point in the plane and not on the linewith point P' such that l is the perpendicular bisector of segment PP'. IF P is on l then P is paired with itself ... Under a reflection the image is laterally inverted. Thus reflection does NOT preserve orientation...
False. In order for the line PQ to lie in plane B, then both P and Q must lie in plane B.
Lines are parallel if they are perpendicular to the same line. Since the lines m and l are parallel (given), and the line l is perpendicular to the line p (given), then the lines m and p are perpendicular (the conclusion).
true
1
Only one line can be drawn parallel to plane P that passes through point A. This line will be oriented in the same direction as the plane, remaining equidistant from it. All other lines passing through point A will either intersect the plane or be skew to it.
Assume there are no lines through a given point that is parallel to a given line or assume that there are many lines through a given point that are parallel to a given line. There exist a line l and a point P not on l such that either there is no line m parallel to l through P or there are two distinct lines m and n parallel to l through P.
Yes, if points P and Q are contained in a plane, then the line segment connecting P and Q, denoted as PQ, is also entirely contained in that plane. This is a fundamental property of planes in Euclidean geometry, where any line segment formed by two points within the same plane must lie entirely within that plane. Therefore, the assertion is correct.
Plane sailing is a navigational method used over small ranges of latitude and longitude, based on the assumption that the meridian through the point of departure, the parallel through the destination, and the course line form a right triangle in a plane. The formula is tan C= p/l.
The hyperbolic parallel postulate states that given a line L and a point P, not on the line, there are at least two distinct lines through P that do not intersect L.The negation is that given a line L and a point P, not on the line, there is at most one line through P that does not intersect L.The negation includes the case where there is exactly one such line - which is the Euclidean space.