The derivative of x^n is nx^(n-1) any n.
The derivative of x^4 is 4x^3.
X^4 ? 4x^3
0.3333
d/dx(x4/4) = x3
ln(x4)?d/dx(ln(u))=1/u*d/dx(u)d/dx(ln(x4))=[1/x4]*d/dx(x4)-The derivative of x4 is:d/dx(x4)=4x4-1d/dx(x4)=4x3d/dx(ln(x4))=[1/x4]*(4x3)d/dx(ln(x4))=4x3/x4d/dx(ln(x4))=4/x(lnx)4?Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(lnx)4=4(lnx)4-1*d/dx(lnx)d/dx(lnx)4=4(lnx)3*d/dx(lnx)-The derivative of lnx is:d/dx(ln(u))=1/u*d/dx(u)d/dx(lnx)=1/x*d/dx(x)d/dx(lnx)=1/x*(1)d/dx(lnx)=1/xd/dx(lnx)4=4(lnx)3*(1/x)d/dx(lnx)4=4(lnx)3/x
10/x3 = 10 x-3d/dx(10x-3) = -30 x-4 = -30/x4
You will find several formulae in the Wikipedia article on "derivative".
The derivative at any point in a curve is equal to the slope of the line tangent to the curve at that point. Doing it in terms of the actual expression of the curve, find the derivative of the curve, then plug the x-value of the point into the derivative to find the derivative at that point.
Find the derivative of Y and then divide that by the derivative of A
If you mean: f(x) = x4 - 3x3 + 5x2 / x2 then: f(x) = x4 - 3x3 + 5 ∴ f'(x) = 4x3 - 9x2 If you mean: f(x) = (x4 - 3x3 + 5x2) / x2 then: f(x) = x2 - 3x + 5 ∴ f'(x) = 2x - 3
The purpose of finding a derivative is to find the instantaneous rate of change. In addition, taking the derivative is used in integration by parts.
The derivative of sin(x) is cos(x).
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2