exact differential equation, is a type of differential equation that can be solved directly with out the use of any other special techniques in the subject. A first order differential equation is called exact differential equation ,if it is the result of a simple differentiation. A exact differential equation the general form P(x,y) y'+Q(x,y)=0Differential equation is a mathematical equation. These equation have some fractions and variables with its derivatives.
In its normal form, you do not solve differential equation for x, but for a function of x, usually denoted by y = f(x).
ordinary differential equation is obtained only one independent variable and partial differential equation is obtained more than one variable.
All the optimization problems in Computer Science have a predecessor analogue in continuous domain and they are generally expressed in the form of either functional differential equation or partial differential equation. A classic example is the Hamiltonian Jacobi Bellman equation which is the precursor of Bellman Ford algorithm in CS.
All the optimization problems in Computer Science have a predecessor analogue in continuous domain and they are generally expressed in the form of either functional differential equation or partial differential equation. A classic example is the Hamiltonian Jacobi Bellman equation which is the precursor of Bellman Ford algorithm in CS.
The rate at which a chemical process occurs is usually best described as a differential equation.
The order of a differential equation is a highest order of derivative in a differential equation. For example, let us assume a differential expression like this. d2y/dx2 + (dy/dx)3 + 8 = 0 In this differential equation, we are seeing highest derivative (d2y/dx2) and also seeing the highest power i.e 3 but it is power of lower derivative dy/dx. According to the definition of differential equation, we should not consider highest power as order but should consider the highest derivative's power i.e 2 as order of the differential equation. Therefore, the order of the differential equation is second order.
An ordinary differential equation (ODE) has only derivatives of one variable.
The degree of a differential equation is the POWER of the derivative of the highest order. Using f' to denote df/fx, f'' to denote d2f/dx2 (I hate this browser!!!), and so on, an equation of the form (f'')^2 + (f')^3 - x^4 = 17 is of second degree.
fuzzy differential equation (FDEs) taken account the information about the behavior of a dynamical system which is uncertainty in order to obtain a more realistic and flexible model. So, we have r as the fuzzy number in the equation whereas ordinary differential equations do not have the fuzzy number.
leibniz
It is an equation. It could be an algebraic equation, or a trigonometric equation, a differential equation or whatever, but it is still an equation.