Best Answer


User Avatar

Wiki User

βˆ™ 2012-07-27 17:51:52
This answer is:
User Avatar
Study guides


20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

See all cards
848 Reviews

Add your answer:

Earn +20 pts
Q: How do you integrate sinx divide sinx plus cosx?
Write your answer...
Still have questions?
magnify glass
Related questions

Prove this identity 1 plus cosx divide by sinx equals sinx divide by 1-cosx?


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx

How do you simplify cosx plus sinx tanx?

to simplify Cosx=Sinx Tanx you should remember your fundamental and pythagorean identities.. Cosx + Sinx Tanx Cosx + Sinx (Sinx/Cosx) <---------- From Tanx= Sinx/Cosx Cosx + Sin2x/ Cos x <------------- do the LCD Cosx (Cosx/Cosx) + Sin2x/Cosx (Cos2x+Sin2x)/Cosx 1/Cosx <--------- From Sin2x + Cos2x =1 or Secx <-------- answer Comment if you have questions...:))

Can you Show 1 over sinx cosx - cosx over sinx equals tanx?

From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.

Find the critical numbers of sinx plus cosx?

f(x)=sinx+cosx take the derivative f'(x)=cosx-sinx critical number when x=pi/4

What is the derivative of sin x minus cos x?


How do you prove the following equation the quantity of sin theta divided by 1 minus cos theta minus the quantity 1 plus cos theta divided by sin theta equals 0?

You will have to bear with the angle being represented by x because this browser will not allow characters from other alphabets!sin^2x + cos^2x = 1=> sin^2x = 1 - cos^x = (1 + cosx)(1 - cosx)Divide both sides by sinx (assuming that sinx is not zero).=> sinx = (1 + cosx)(1 - cosx)/sinxDivide both sides by (1 - cosx)=> sinx/(1 - cosx) = (1 + cosx)/sinx=> sinx/(1 - cosx) - (1 + cosx)/sinx = 0

Integral of cos2x log cosx-sinx coax plus since?

it is not possible to get the Integral of cos2x log cosx-sinx coax plus since there are no symbols given in the equation.

What is sinx plus cosx plus cotx simplified?

There is no sensible or useful simplification.

Parenthesis 1 plus tanx end parenthesis divided by sinx equals cscx plus secx?

(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx

Sinx plus cosx equals 0?

x = 3pi/4

How does secx plus 1 divided by cotx equal 1 plus sinx divided by cosx?

secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = 1 + sinx/cosx, andsin/cos = tanx, therefore1/cosx + tanx = 1 + tanx, therefore1/cosx = 1, therfore1 = cosx.So, therfore, it is not neccesarily true.But if you meansecx plus 1 divided by cotx equals (1 plus sinx) divided by cosx(this is probably what you mean) Let's start over!secx = 1/cosxand 1/cotx = tanx, therefore1/cosx + tanx = (1+sinx)/cosx therefore1/cosx + tanx = 1/cosx + sinx/cosxsinx/cosx = tanx therfore1/cosx + tanx = 1/cosx + tanxDo you think this is correct? Subtract both sides by 1/cosx + tanx:0 = 0So, therefore, this is correct!(BTW, I'm in Grade 6! :P)

People also asked