answersLogoWhite

0

How do you solve COS?

Updated: 9/25/2023
User Avatar

Wiki User

8y ago

Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How do you solve COS?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

If cos and theta 0.65 what is the value of sin and theta?

You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.


How do you solve double angle equations for trigonometry?

There are two ways to solve for the double angle formulas in trigonometry. The first is to use the angle addition formulas for sine and cosine. * sin(a + b) = sin(a)cos(b) + cos(a)sin(b) * cos(a + b) = cos(a)cos(b) - sin(a)sin(b) if a = b, then * sin(2a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) * cos(2a) = cos2(a) - sin2(b) The cooler way to solve for the double angle formulas is to use Euler's identity. eix = cos(x) + i*sin(x). Yes, that is "i" as in imaginary number. we we put 2x in for x, we get * e2ix = cos(2x) + i*sin(2x) This is the same as * (eix)2 = cos(2x) + i*sin(2x) We can substitute our original equation back in for eix. * (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x) We can distribute the squared term. * cos2(x) + i*sin(x)cos(x) + i*sin(x)cos(x) + (i*sin(x))2 = cos(2x) + i*sin(2x) And simplify. Because i is SQRT(-1), the i squared term becomes negative. * cos2(x) + 2i*sin(x)cos(x) - sin2(x) = cos(2x) + i*sin(2x) * cos2(x) - sin2(x) + 2i*sin(x)cos(x) = cos(2x) + i*sin(2x) Now you can plainly see both formulas in the equation arranged quite nicely. I don't yet know how to get rid of the i, but I'm working on it.


If a cos theta plus b sin theta equals 8 and a sin theta - b cos theta equals 5 show that a squared plus b squared equals 89?

There is a hint to how to solve this in what is required to be shown: a and b are both squared.Ifa cos θ + b sin θ = 8a sin θ - b cos θ = 5then square both sides of each to get:a² cos² θ + 2ab cos θ sin θ + b² sin² θ = 64a² sin² θ - 2ab sin θ cos θ + b² cos² θ = 25Now add the two together:a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = 89→ a²(cos² θ + sin² θ) + b² (sin² θ + cos² θ) = 89using cos² θ + sin² θ = 1→ a² + b² = 89


What is this expression as the cosine of an angle cos30cos55 plus sin30sin55?

cos(30)cos(55)+sin(30)sin(55)=cos(30-55) = cos(-25)=cos(25) Note: cos(a)=cos(-a) for any angle 'a'. cos(a)cos(b)+sin(a)sin(b)=cos(a-b) for any 'a' and 'b'.


Express all the trignometric ratios in terms of COS A?

Provided that any denominator is non-zero, sin = sqrt(1 - cos^2)tan = sqrt(1 - cos^2)/cos sec = 1/cos cosec = 1/sqrt(1 - cos^2) cot = cos/sqrt(1 - cos^2)

Related questions

Sin Squared x plus cos x equals 0 for x is a part of 1 to 360 degrees?

Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.


Write a c program to solve cos series?

Please do.


How do you solve cos theta subtract cos squared theta divide 1 plus cos theta?

The question contains an expression but not an equation. An expression cannot be solved.


Solve Cos x - 1 equals 0?

cos x - 1 = 0 cos(x) = 1 x = 0 +/- k*pi radians where k = 1,2,3,...


How to solve sin of cos inverse of x?

sin[cos-1(x)] is an expression; it is not an equation (nor inequality). An expression cannot be solved.


How many solutions does cos squared minus two cos equal three?

One solution. (cos x)2 - 2cos x = 3 Factor: (cos x - 3)(cos x + 1)= 0 cos x = {-1, 3} Solve: For cos x = -1, x = 180 deg No solution for cos x = 3


How do you solve for 42 degrees equal to 0.74?

cos-1(0.74) = 42.26858443 degrees


If cos and theta 0.65 what is the value of sin and theta?

You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.


How do you solve cos x 0.4 for 0 to two pie?

I assume that you want to solve cos(x) = 2*pi, not pie! arccos(0.4) = 1.1593 radians. This is the solution in the range 0 to pi. There is another solution which is at 2*pi - 1.1593 = 5.1239 radians. Note that arccos appears on most calculators as "cos to the power -1".


How do you solve secant-tangent and tangent-tangent angles?

you solve secant angles when you have the hypotenuse and adjacent sides. sec=1/cos or, cos^-1 (reciprocal identity property) Tangent is solved when you have adjacent and opposite sides, or you can look at it as its what you use when you dont have the hypotenuse. tan=sin/cos or tan=opp/adj or tan=y/x


How do you solve the equation negative 3 cos t equals 1 in the interval from 0 to 2 pi?

Isolate cos (t): cos(t)=1/3. Use a calculator from here because the answer is not an integer or a simple number.


How do you solve double angle equations for trigonometry?

There are two ways to solve for the double angle formulas in trigonometry. The first is to use the angle addition formulas for sine and cosine. * sin(a + b) = sin(a)cos(b) + cos(a)sin(b) * cos(a + b) = cos(a)cos(b) - sin(a)sin(b) if a = b, then * sin(2a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) * cos(2a) = cos2(a) - sin2(b) The cooler way to solve for the double angle formulas is to use Euler's identity. eix = cos(x) + i*sin(x). Yes, that is "i" as in imaginary number. we we put 2x in for x, we get * e2ix = cos(2x) + i*sin(2x) This is the same as * (eix)2 = cos(2x) + i*sin(2x) We can substitute our original equation back in for eix. * (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x) We can distribute the squared term. * cos2(x) + i*sin(x)cos(x) + i*sin(x)cos(x) + (i*sin(x))2 = cos(2x) + i*sin(2x) And simplify. Because i is SQRT(-1), the i squared term becomes negative. * cos2(x) + 2i*sin(x)cos(x) - sin2(x) = cos(2x) + i*sin(2x) * cos2(x) - sin2(x) + 2i*sin(x)cos(x) = cos(2x) + i*sin(2x) Now you can plainly see both formulas in the equation arranged quite nicely. I don't yet know how to get rid of the i, but I'm working on it.