answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra

Add your answer:

Earn +20 pts
Q: How do you solve COS?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

If cos and theta 0.65 what is the value of sin and theta?

You can use the Pythagorean identity to solve this:(sin theta) squared + (cos theta) squared = 1.


2 cos x plus 1 cos x plus -1 equals 0?

To solve the equation 2cos(x) + cos(x) - 1 = 0, we first combine like terms to get 3cos(x) - 1 = 0. Then, we isolate the cosine term by adding 1 to both sides to get 3cos(x) = 1. Finally, we divide by 3 to solve for cos(x), which gives cos(x) = 1/3. Therefore, x = arccos(1/3) or approximately 70.53 degrees.


How do you solve double angle equations for trigonometry?

There are two ways to solve for the double angle formulas in trigonometry. The first is to use the angle addition formulas for sine and cosine. * sin(a + b) = sin(a)cos(b) + cos(a)sin(b) * cos(a + b) = cos(a)cos(b) - sin(a)sin(b) if a = b, then * sin(2a) = sin(a)cos(a) + cos(a)sin(a) = 2sin(a)cos(a) * cos(2a) = cos2(a) - sin2(b) The cooler way to solve for the double angle formulas is to use Euler's identity. eix = cos(x) + i*sin(x). Yes, that is "i" as in imaginary number. we we put 2x in for x, we get * e2ix = cos(2x) + i*sin(2x) This is the same as * (eix)2 = cos(2x) + i*sin(2x) We can substitute our original equation back in for eix. * (cos(x) + i*sin(x))2 = cos(2x) + i*sin(2x) We can distribute the squared term. * cos2(x) + i*sin(x)cos(x) + i*sin(x)cos(x) + (i*sin(x))2 = cos(2x) + i*sin(2x) And simplify. Because i is SQRT(-1), the i squared term becomes negative. * cos2(x) + 2i*sin(x)cos(x) - sin2(x) = cos(2x) + i*sin(2x) * cos2(x) - sin2(x) + 2i*sin(x)cos(x) = cos(2x) + i*sin(2x) Now you can plainly see both formulas in the equation arranged quite nicely. I don't yet know how to get rid of the i, but I'm working on it.


What is this expression as the cosine of an angle cos30cos55 plus sin30sin55?

cos(30)cos(55)+sin(30)sin(55)=cos(30-55) = cos(-25)=cos(25) Note: cos(a)=cos(-a) for any angle 'a'. cos(a)cos(b)+sin(a)sin(b)=cos(a-b) for any 'a' and 'b'.


What is cos2 A?

Cos(2A) = Cos(A + A) Double Angle Indentity Cos(A+A) = Cos(A)Cos(A) - Sin(A)Sin(A) => Cos^(2)[A] - SIn^(2)[A] => Cos^(2)[A] - (1 - Cos^(2)[A] => 2Cos^(2)[A] - 1