To describe the size of an ellipse.
Ganymede's semi-major axis is approximately 1,070,400 kilometers.
The length of the major axis of an ellipse is equal to twice the length of the semi-major axis. If the semi-major axis is denoted as "a," then the major axis length is 2a. This axis is the longest diameter of the ellipse, stretching from one end of the ellipse to the other through the center.
To determine the semi-major axis of an orbit, you can measure the distance between the center of the orbit and one of its furthest points. This distance is half of the longest diameter of the elliptical orbit and is known as the semi-major axis.
The length of the major axis of an ellipse is determined by the lengths of its semi-major and semi-minor axes. In this case, if the red line segment represents the semi-major axis (8), the length of the major axis would be twice that, which is 16. The blue line segment, being shorter (4), represents the semi-minor axis. Thus, the major axis of the ellipse is 16 units long.
Whichever segment it is to which you are referring, it does not need to be red; it can be any color.The segment that intersects both foci is called the semi-major axis. The segment that is perpendicular to the semi-major axis with one end midway between the foci is called the semi-minor axis.
The average distance from the sun to a planet is its semi-major axis, which is the longest radius of its elliptical orbit.
The square root of ( a squared plus b squared ), quantity divided by a, where a is the length of the semi-major axis and b is the length of the semi-minor axis.
The square root of ( a squared plus b squared ), quantity divided by a, where a is the length of the semi-major axis and b is the length of the semi-minor axis.
An ellipse with centre (xo, yo) with major and minor axes a and b (the larger of a, b being the major axis) has an equation of the form: (x - xo)2 / a2 + (y - yo)2 / b2 = 1 The semi-major and semi-minor axes are half the major and minor axes. So re-arrange the equation into this form: 16x2 + y2 = 16 x2 + y2 / 16 = 1 (x - 0)2 / 12 + (y - 0)2 / 42 = 1 Giving: Centre = (0, 0) Major axis = 2 Semi-major axis = 2/2 = 1 Minor axis = 1 Semi-minor axis = 1/2
It could be many shapes: for example, an ellipse with a semi major axis of length 11 and semi minor axis of length 10.
The square root of ( a squared plus b squared ), quantity divided by a, where a is the length of the semi-major axis and b is the length of the semi-minor axis.
To find the focus of an ellipse from its major axis, first identify the lengths of the semi-major axis (a) and the semi-minor axis (b). The distance from the center to each focus (c) can be calculated using the formula (c = \sqrt{a^2 - b^2}). The foci are located along the major axis, at coordinates ((\pm c, 0)) if the ellipse is centered at the origin and aligned with the x-axis.