Are you sure sin x = 5/3? The hypotenuse is always longer than the legs, and saying sine x = 5/3 means the leg is 5 units long and the hypotenuse is 3 units long.
My best guess would be cos x = 5/4, since 5/3 points toward a 3/4/5 triangle, even if it is set up incorrectly.
If the question is indeed correct, this can only be solved using complex numbers:
using the identity sin^2(x) + cos^2(x) = 1 it follows that cos^2(x) = -16/9
Therefore cos(x) = + or minus 4/3 i, where i = sqrt(-1)
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
To show that (cos tan = sin) ??? Remember that tan = (sin/cos) When you substitute it for tan, cos tan = cos (sin/cos) = sin QED
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
Sin 15 + cos 105 = -1.9045
First, note that sin(a+b)=sin(a)cos(b)+sin(b)cos(a)[For a proof, see: www.mathsroom.co.uk/downloads/Compound_Angle_Proof.pptFor the case of b=a, we have:sin (a+a)=sin(a)cos(a)+sin(a)cos(a)sin (2a)=2*sin(a)cos(a)
If x = sin θ and y = cos θ then: sin² θ + cos² θ = 1 → x² + y² = 1 → x² = 1 - y²
Sin[x] = Cos[x] + (1/3)
f(x)=cos(sin(x2)) [u(v)]' = u'(v) * v' so f'(x) = cos'(sinx(x2)) * sin'(x2) * (x2)' f'(x) = -sin(sin(x2)) * cos(x2) * 2x = -2x sin(sin(x2)) cos(x2)
You can't. tan x = sin x/cos x So sin x tan x = sin x (sin x/cos x) = sin^2 x/cos x.
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
All others can be derived from these and a little calculus: sin2x+cos2x=1 sec2x-tan2x=1 sin(a+b)=sin(a)cos(b)+sin(b)sin(a) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) eix=cos(x)+i*sin(x)
No. Tan(x)=Sin(x)/Cos(x) Sin(x)Tan(x)=Sin2(x)/Cos(x) Cos(x)Tan(x)=Sin(x)