To show that (cos tan = sin) ???
Remember that tan = (sin/cos)
When you substitute it for tan, cos tan = cos (sin/cos) = sin
QED
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
cos(x) = sin(pi/2 + x)
I'm not really sure what you mean by "the solution", but that equation cos = sec - sintan does simplify down to sin^2 + cos^2 = 1 which so happens to be an identity. I'm not sure if that's what you're looking for, but if it is, here are the steps in simplifying it. 1. Convert sec to 1/cos 2. Convert tan into sin/cos and multiply it by sin sintan = sin(sin/cos) = (sin^2)/cos You then have cos = 1/cos - (sin^2/cos) 3. Multiply everything by cos cos^2 = 1 - sin^2 4. And finally, send the sin^2 over to the left side by adding it (since it is being subracted on the right) You should see this sin^2 + cos^2 = 1 which is an identity.
The identity for tan(theta) is sin(theta)/cos(theta).
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
sec x - cos x = (sin x)(tan x) 1/cos x - cos x = Cofunction Identity, sec x = 1/cos x. (1-cos^2 x)/cos x = Subtract the fractions. (sin^2 x)/cos x = Pythagorean Identity, 1-cos^2 x = sin^2 x. sin x (sin x)/(cos x) = Factor out sin x. (sin x)(tan x) = (sin x)(tan x) Cofunction Identity, (sin x)/(cos x) = tan x.
YES!!!! Sin(2x) = Sin(x+x') Sin(x+x') = SinxCosx' + CosxSinx' I have put a 'dash' on an 'x' only to show its position in the identity. Both x & x' carry the same value. Hence SinxCosx' + CosxSinx' = Sinx Cos x + Sinx'Cosx => 2SinxCosx
cos(x) = sin(pi/2 + x)
Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]
I'm not really sure what you mean by "the solution", but that equation cos = sec - sintan does simplify down to sin^2 + cos^2 = 1 which so happens to be an identity. I'm not sure if that's what you're looking for, but if it is, here are the steps in simplifying it. 1. Convert sec to 1/cos 2. Convert tan into sin/cos and multiply it by sin sintan = sin(sin/cos) = (sin^2)/cos You then have cos = 1/cos - (sin^2/cos) 3. Multiply everything by cos cos^2 = 1 - sin^2 4. And finally, send the sin^2 over to the left side by adding it (since it is being subracted on the right) You should see this sin^2 + cos^2 = 1 which is an identity.
The identity for tan(theta) is sin(theta)/cos(theta).
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
Sin 15 + cos 105 = -1.9045
No, (sinx)^2 + (cosx)^2=1 is though
2