• Math and Arithmetic

Is the statement P q valid?

User Avatar

Wiki User

βˆ™ 2017-09-24 22:40:46

Best Answer

No, it is not valid because there is no operator between P and q.

2017-09-25 09:28:16
This answer is:
User Avatar

Add your answer:

Earn +5 pts
Q: Is the statement P q valid?
Write your answer...

Related Questions

If p q and q r then p r. Converse statement B.A syllogism C.Contrapositive statement D.Inverse statement?

Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r

Which statement represents the inverse of p β†’ q?


What does the statement p arrow q mean?

It means the statement P implies Q.

What notation does a condition statement use?

"if p then q" is denoted as p → q. ~p denotes negation of p. So inverse of above statement is ~p → ~q, and contrapositive is ~q →~p. ˄ denotes 'and' ˅ denotes 'or'

What is converse inverse and contrapositive?

if the statement is : if p then q converse: if q then p inverse: if not p then not q contrapositive: if not q then not

This statement is false brain teaser?

Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.

Make a truth table for the statement if p then not q?

. p . . . . . q. 0 . . . . . 1. 1 . . . . . 0

Which term best describes the statement given If p q and q r then p r below?

a syllogism

Definition of conditional statement in geometry?

A conditional statement is much like the transitive property in geometry, meaning if: P>Q and ~N>P then you can conclude: if ~N>Q

What is the converse of p only if q?

q only if p. The converse of a statement is just swapping the places of the two terms.

What are the basic theorems of Boolean algebra?

The Boolean prime ideal theorem:Let B be a Boolean algebra, let I be an ideal and let F be a filter of B, such that and IF are disjoint. Then I is contained in some prime ideal of B that is disjoint from F. The consensus theorem:(X and Y) or ((not X) and Z) or (Y and Z) ≡ (X and Y) or ((not X) and Z) xy + x'z + yz ≡ xy + x'zDe Morgan's laws:NOT (P OR Q) ≡ (NOT P) AND (NOT Q)NOT (P AND Q) ≡ (NOT P) OR (NOT Q)AKA:(P+Q)'≡P'Q'(PQ)'≡P'+Q'AKA:¬(P U Q)≡¬P ∩ ¬Q¬(P ∩ Q)≡¬P U ¬QDuality Principle:If a given statement is valid for all partially ordered sets, then its dual statement, obtained by inverting the direction of all order relations and by dualizing all order theoretic definitions involved, is also valid for all partially ordered sets. The laws of classical logicPeirce's law:((P→Q)→P)→PP must be true if there is a proposition Q such that the truth of P follows from the truth of "if Pthen Q". In particular, when Q is taken to be a false formula, the law says that if P must be true whenever it implies the false, then P is true.Stone's representation theorem for Boolean algebras:Every Boolean algebra is isomorphic to a field of sets.Source is linked

What is is called when a conditional and its converse are true and they are written as a single true statement?

It is an if and only if (often shortened to iff) is usually written as p <=> q. This is also known as Equivalence. If you have a conditional p => q and it's converse q => p we can then connect them with an & we have: p => q & q => p. So, in essence, Equivalence is just a shortened version of p => q & q => p .

What type of logic statement was used to state the Corresponding Angle Postulate and the related theorems?

the logical structure of the formulation of the CAP is on the form "p implies q", or "If p, then q". In symbols: p => q with p being the statement "l and l' are lines cut by a transversal t in such a way that two corresponding angles are congruent" and q the statement "l is parallel to l'" It's corollarys are also on this form, obviously with other p and q. Not sure if this is what you were looking for.

What is a contra positive statement?

Conditional statements are also called "if-then" statements.One example: "If it snows, then they cancel school."The converse of that statement is "If they cancel school, then it snows."The inverse of that statement is "If it does not snow, then they do not cancel school.The contrapositive combines the two: "If they do not cancel school, then it does not snow."In mathematics:Statement: If p, then q.Converse: If q, then p.Inverse: If not p, then not q.Contrapositive: If not q, then not p.If the statement is true, then the contrapositive is also logically true. If the converse is true, then the inverse is also logically true.

what- let p and q be the statement shownp: jake will work todayq: jake will wisit his sister?


What is the law of modus tollens?

It in Math, (Geometry) If p implies q is a true conditional statement and not q is true, then not p is true.

What is the negation of the statement quadrilateral abcd is a paralleogram and it has a right angle?

"abcd is not a parallelogram or it does not have any right angles." ~(P and Q) = ~P or ~Q

What value is assigned to the type int variable ans in this statement if the value of p is 100 and q is 50?

It is not possible to answer this question without knowing the actual expression used in the assignment statement. The following are merely example expressions showing some of the values that could be assigned to ans: int ans, p=100, q=50; ans = p + q; // ans = 150 ans = p * q; // ans = 5000 ans = p - q; // ans = -50 ans = p / q; // ans = 2 ans = p % q; // ans = 0

Which law says If p and p q are true?

This is an incomplete statement. Your question cannot be answered.

What is qΒ²-pΒ² divided by q-p?

q + p

What are the inference rules for functional dependency?

"The present list of 19 rules of inference constitutes a COMPLETE system of truth-functional logic, in the sense that it permits the construction of a formal proof of validity for ANY valid truth-functional argument." (FN1)The first nine rules of the list are rules of inference that "correspond to elementary argument forms whose validity is easily established by truth tables." (Id, page 351). The remaining ten rules are the Rules of Replacement, "which permits us to infer from any statement the result of replacing any component of that statement by any other statement logically equivalent to the component replaced." (Id, page 359).Here are the 19 Rules of Inference:1. Modus Ponens (M.P.)p qpq 2.Modus Tollens (M.T.)p q~q~p 3.Hypothetical Syllogism (H.S.)p qq rp r 4.Disjunctive Syllogism (D.S.)p v q~ pq 5. Constructive Dilemma (C.D.)(p q) . (r s)p v rq v s 6. Absorption (Abs.)p qp (p. q)7. Simplification (Simp.)p . qp 8. Conjunction (Conj.)pqp . q 9. Addition (Add.)pp v qAny of the following logically equivalent expressions can replace each other wherever they occur:10.De Morgan's Theorem (De M.) ~(p . q) (~p v ~q)~(p v q) (~p . ~q) 11. Commutation (Com.)(p v q) (q v p)(p . q) (q . p) 12. Association (Assoc.)[p v (q v r)] [(p v q) v r][p . (q . r)] [(p . q) . r] 13.Distribution (Dist) [p . (q v r)] [(p . q) v (p . r)][p v (q . r)] [(p v q) . (p v r)] 14.Double Negation (D.N.)p ~ ~p 15. Transposition (Trans.)(p q) (~q ~p) 16. Material Implication (M. Imp.)(p q) (~p v q) 17. Material Equivalence (M. Equiv.)(p q) [(p q) . (q p)](p q) [(p . q) v (~p . ~q)] 18. Exportation (Exp.)[(p . q) r] [p (q r)] 19. Tautology (Taut.) p (p v p)p (p . p)FN1: Introduction to Logic, Irving M. Copi and Carl Cohen, Prentice Hall, Eleventh Edition, 2001, page 361. The book contains the following footnote after this paragraph: "A method of proving this kind of completeness for a set of rules of inference can be found in I. M. Copi, Symbolic Logic, 5th Edition. (New York: Macmillian, 1979), chap 8, See also John A. Winnie, "The Completeness of Copi's System of Natural Deduction," Notre Dame Journal of Formal Logic 11 (July 1970), 379-382."

What are the difference between affirmative syllogism to negative syllogism?

Affirmative Syllogism: All P are Q X is a P X is a Q Negative Syllogism: All P are Q X is not a Q X is not P Both syllogisms are always valid. but dont be fooled by their evil twins the fallacy of affirmation and the fallacy of negation.

How do you construct a truth table for q arrow p?

I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .

What is the sum or difference of p and q?

The sum of p and q means (p+q). The difference of p and q means (p-q).

What is the truth table for p arrow q?

Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q