Q: Is the statement P q valid?

Write your answer...

Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r

A+

It means the statement P implies Q.

"if p then q" is denoted as p → q. ~p denotes negation of p. So inverse of above statement is ~p → ~q, and contrapositive is ~q →~p. ˄ denotes 'and' ˅ denotes 'or'

if the statement is : if p then q converse: if q then p inverse: if not p then not q contrapositive: if not q then not

Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.

. p . . . . . q. 0 . . . . . 1. 1 . . . . . 0

a syllogism

A conditional statement is much like the transitive property in geometry, meaning if: P>Q and ~N>P then you can conclude: if ~N>Q

q only if p. The converse of a statement is just swapping the places of the two terms.

The Boolean prime ideal theorem:Let B be a Boolean algebra, let I be an ideal and let F be a filter of B, such that and IF are disjoint. Then I is contained in some prime ideal of B that is disjoint from F. The consensus theorem:(X and Y) or ((not X) and Z) or (Y and Z) ≡ (X and Y) or ((not X) and Z) xy + x'z + yz ≡ xy + x'zDe Morgan's laws:NOT (P OR Q) ≡ (NOT P) AND (NOT Q)NOT (P AND Q) ≡ (NOT P) OR (NOT Q)AKA:(P+Q)'≡P'Q'(PQ)'≡P'+Q'AKA:¬(P U Q)≡¬P ∩ ¬Q¬(P ∩ Q)≡¬P U ¬QDuality Principle:If a given statement is valid for all partially ordered sets, then its dual statement, obtained by inverting the direction of all order relations and by dualizing all order theoretic definitions involved, is also valid for all partially ordered sets. The laws of classical logicPeirce's law:((P→Q)→P)→PP must be true if there is a proposition Q such that the truth of P follows from the truth of "if Pthen Q". In particular, when Q is taken to be a false formula, the law says that if P must be true whenever it implies the false, then P is true.Stone's representation theorem for Boolean algebras:Every Boolean algebra is isomorphic to a field of sets.Source is linked

It is an if and only if (often shortened to iff) is usually written as p <=> q. This is also known as Equivalence. If you have a conditional p => q and it's converse q => p we can then connect them with an & we have: p => q & q => p. So, in essence, Equivalence is just a shortened version of p => q & q => p .

the logical structure of the formulation of the CAP is on the form "p implies q", or "If p, then q". In symbols: p => q with p being the statement "l and l' are lines cut by a transversal t in such a way that two corresponding angles are congruent" and q the statement "l is parallel to l'" It's corollarys are also on this form, obviously with other p and q. Not sure if this is what you were looking for.

Conditional statements are also called "if-then" statements.One example: "If it snows, then they cancel school."The converse of that statement is "If they cancel school, then it snows."The inverse of that statement is "If it does not snow, then they do not cancel school.The contrapositive combines the two: "If they do not cancel school, then it does not snow."In mathematics:Statement: If p, then q.Converse: If q, then p.Inverse: If not p, then not q.Contrapositive: If not q, then not p.If the statement is true, then the contrapositive is also logically true. If the converse is true, then the inverse is also logically true.

A+

It in Math, (Geometry) If p implies q is a true conditional statement and not q is true, then not p is true.

"abcd is not a parallelogram or it does not have any right angles." ~(P and Q) = ~P or ~Q

It is not possible to answer this question without knowing the actual expression used in the assignment statement. The following are merely example expressions showing some of the values that could be assigned to ans: int ans, p=100, q=50; ans = p + q; // ans = 150 ans = p * q; // ans = 5000 ans = p - q; // ans = -50 ans = p / q; // ans = 2 ans = p % q; // ans = 0

This is an incomplete statement. Your question cannot be answered.

q + p

"The present list of 19 rules of inference constitutes a COMPLETE system of truth-functional logic, in the sense that it permits the construction of a formal proof of validity for ANY valid truth-functional argument." (FN1)The first nine rules of the list are rules of inference that "correspond to elementary argument forms whose validity is easily established by truth tables." (Id, page 351). The remaining ten rules are the Rules of Replacement, "which permits us to infer from any statement the result of replacing any component of that statement by any other statement logically equivalent to the component replaced." (Id, page 359).Here are the 19 Rules of Inference:1. Modus Ponens (M.P.)p qpq 2.Modus Tollens (M.T.)p q~q~p 3.Hypothetical Syllogism (H.S.)p qq rp r 4.Disjunctive Syllogism (D.S.)p v q~ pq 5. Constructive Dilemma (C.D.)(p q) . (r s)p v rq v s 6. Absorption (Abs.)p qp (p. q)7. Simplification (Simp.)p . qp 8. Conjunction (Conj.)pqp . q 9. Addition (Add.)pp v qAny of the following logically equivalent expressions can replace each other wherever they occur:10.De Morgan's Theorem (De M.) ~(p . q) (~p v ~q)~(p v q) (~p . ~q) 11. Commutation (Com.)(p v q) (q v p)(p . q) (q . p) 12. Association (Assoc.)[p v (q v r)] [(p v q) v r][p . (q . r)] [(p . q) . r] 13.Distribution (Dist) [p . (q v r)] [(p . q) v (p . r)][p v (q . r)] [(p v q) . (p v r)] 14.Double Negation (D.N.)p ~ ~p 15. Transposition (Trans.)(p q) (~q ~p) 16. Material Implication (M. Imp.)(p q) (~p v q) 17. Material Equivalence (M. Equiv.)(p q) [(p q) . (q p)](p q) [(p . q) v (~p . ~q)] 18. Exportation (Exp.)[(p . q) r] [p (q r)] 19. Tautology (Taut.) p (p v p)p (p . p)FN1: Introduction to Logic, Irving M. Copi and Carl Cohen, Prentice Hall, Eleventh Edition, 2001, page 361. The book contains the following footnote after this paragraph: "A method of proving this kind of completeness for a set of rules of inference can be found in I. M. Copi, Symbolic Logic, 5th Edition. (New York: Macmillian, 1979), chap 8, See also John A. Winnie, "The Completeness of Copi's System of Natural Deduction," Notre Dame Journal of Formal Logic 11 (July 1970), 379-382."

Affirmative Syllogism: All P are Q X is a P X is a Q Negative Syllogism: All P are Q X is not a Q X is not P Both syllogisms are always valid. but dont be fooled by their evil twins the fallacy of affirmation and the fallacy of negation.

I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .

The sum of p and q means (p+q). The difference of p and q means (p-q).

Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q