answersLogoWhite

0


Best Answer

It means the statement P implies Q.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What does the statement p arrow q mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What does p over q mean in algebra?

P! / q!(p-q)!


Which term best describes the statement given If p q and q r then p r below?

a syllogism


Which law says If p and p q are true?

This is an incomplete statement. Your question cannot be answered.


What are the inference rules for functional dependency?

"The present list of 19 rules of inference constitutes a COMPLETE system of truth-functional logic, in the sense that it permits the construction of a formal proof of validity for ANY valid truth-functional argument." (FN1)The first nine rules of the list are rules of inference that "correspond to elementary argument forms whose validity is easily established by truth tables." (Id, page 351). The remaining ten rules are the Rules of Replacement, "which permits us to infer from any statement the result of replacing any component of that statement by any other statement logically equivalent to the component replaced." (Id, page 359).Here are the 19 Rules of Inference:1. Modus Ponens (M.P.)p qpq 2.Modus Tollens (M.T.)p q~q~p 3.Hypothetical Syllogism (H.S.)p qq rp r 4.Disjunctive Syllogism (D.S.)p v q~ pq 5. Constructive Dilemma (C.D.)(p q) . (r s)p v rq v s 6. Absorption (Abs.)p qp (p. q)7. Simplification (Simp.)p . qp 8. Conjunction (Conj.)pqp . q 9. Addition (Add.)pp v qAny of the following logically equivalent expressions can replace each other wherever they occur:10.De Morgan's Theorem (De M.) ~(p . q) (~p v ~q)~(p v q) (~p . ~q) 11. Commutation (Com.)(p v q) (q v p)(p . q) (q . p) 12. Association (Assoc.)[p v (q v r)] [(p v q) v r][p . (q . r)] [(p . q) . r] 13.Distribution (Dist) [p . (q v r)] [(p . q) v (p . r)][p v (q . r)] [(p v q) . (p v r)] 14.Double Negation (D.N.)p ~ ~p 15. Transposition (Trans.)(p q) (~q ~p) 16. Material Implication (M. Imp.)(p q) (~p v q) 17. Material Equivalence (M. Equiv.)(p q) [(p q) . (q p)](p q) [(p . q) v (~p . ~q)] 18. Exportation (Exp.)[(p . q) r] [p (q r)] 19. Tautology (Taut.) p (p v p)p (p . p)FN1: Introduction to Logic, Irving M. Copi and Carl Cohen, Prentice Hall, Eleventh Edition, 2001, page 361. The book contains the following footnote after this paragraph: "A method of proving this kind of completeness for a set of rules of inference can be found in I. M. Copi, Symbolic Logic, 5th Edition. (New York: Macmillian, 1979), chap 8, See also John A. Winnie, "The Completeness of Copi's System of Natural Deduction," Notre Dame Journal of Formal Logic 11 (July 1970), 379-382."


If B is between P and Q?

If B is between P and Q, then: P<B<Q

Related questions

If p q and q r then p r. Converse statement B.A syllogism C.Contrapositive statement D.Inverse statement?

Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r


What notation does a condition statement use?

"if p then q" is denoted as p → q. ~p denotes negation of p. So inverse of above statement is ~p → ~q, and contrapositive is ~q →~p. ˄ denotes 'and' ˅ denotes 'or'


What is converse inverse and contrapositive?

if the statement is : if p then q converse: if q then p inverse: if not p then not q contrapositive: if not q then not


How do you construct a truth table for q arrow p?

I guess you mean q → p (as in the logic operator: q implies p).To create this truth table, you run over all truth values for q and p (that is whether each statement is True or False) and calculate the value of the operator. You can use True/False, T/F, 1/0, √/X, etc as long as you are consistent for the symbol used for True and the symbol used for False (the first 3 suggestions given are the usual ones used).For implies:if you have a true statement, then it can only imply a true statement to be truebut a negative statement can imply either a true statement or a false one to be truegiving:. q . . p . q→p--------------. 0 . . 0 . . 1 .. 0 . . 1 . . 1 .. 1 . . 0 . . 0 .. 1 . . 1 . . 1 .


What is the truth table for p arrow q?

Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q


Is the statement P q valid?

No, it is not valid because there is no operator between P and q.


This statement is false brain teaser?

Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.


Which statement represents the inverse of p → q?

A+


What does p over q mean in algebra?

P! / q!(p-q)!


Make a truth table for the statement if p then not q?

. p . . . . . q. 0 . . . . . 1. 1 . . . . . 0


What statement is true if P is an Integer and Q is a nonzero integer?

Any fraction p/q where p is an integer and q is a non-zero integer is rational.


Which term best describes the statement given If p q and q r then p r below?

a syllogism