No.
false
It is false-apex
There are many calculations that could be done: =SUM(Y1:Y10) =AVERAGE(Y1:Y10) =MAX(Y1:Y10) =MIN(Y1:Y10) =COUNT(Y1:Y10)
5x-y1 = 4
Without an equality sign the given terms of an expression can't be considered to be an equation and so therefore no solution is possible.
The formula is the square root of: (x2-x1)^2 plus (y2-y1)^2
#include<stdio.h> #include<graphics.h> #include<math.h> #include<conio.h> #include<dos.h> #include<alloc.h> #include<stdlib.h> #define RAD 3.141592/180 class fig { private: int x1,x2,y1,y2,xinc,yinc; public: void car() { xinc=10;yinc=10; x1=y1=10; x2=x1+90;y2=y1+35; int poly[]={x1+5,y1+10,x1+15,y1+10,x1+20,y1,x1+50,y1,x1+60,y1+10,x1+90,y1+17,x1+90,y1+20,x1+5,y1+20,x1+5,y1+10}; setfillstyle(SOLID_FILL,LIGHTGRAY); setlinestyle(SOLID_LINE,1,2); setcolor(4); drawpoly(9,poly); line(x1+15,y1+10,x1+60,y1+10); line(x1+20,y1+10,x1+20,y1); line(x1+35,y1+10,x1+35,y1); line(x1+50,y1+10,x1+50,y1); floodfill(x1+18,y1+8,4); floodfill(x1+28,y1+8,4); floodfill(x1+36,y1+8,4); floodfill(x1+52,y1+8,4); setfillstyle(SOLID_FILL,4); floodfill(x1+18,y1+12,4); setfillstyle(SOLID_FILL,BLUE); bar(x1+5,y1+20,x1+90,y1+25); setcolor(DARKGRAY); circle(x1+20,y1+25,8); circle(x1+20,y1+25,6); setfillstyle(1,8); floodfill(x1+21,y1+25,8); circle(x1+70,y1+25,8); circle(x1+70,y1+25,6); floodfill(x1+71,y1+25,8); int size=imagesize(x1,y1,x2,y2); void far *buf=farmalloc(size); getimage(x1,y1,x2,y2,buf); while(!kbhit()) { putimage(x1,y1,buf,XOR_PUT); x1+=xinc;x2+=xinc; if(x2<(getmaxx()-10)) putimage(x1,y1,buf,COPY_PUT); else { cleardevice(); x1=10;x2=x1+90; y1+=yinc;y2+=yinc; if(y2<(getmaxy()-10)) { putimage(x1,y1,buf,COPY_PUT); } else {y1=10;y2=y1+35;} } delay(200); } farfree(buf); getch(); } } } } void main() { int gd=DETECT,gm; initgraph(&gd,&gm,"d:\\cplus"); fig f; f.car(); cleardevice(); closegraph(); }
Line (x1, y1, x2, y1); Line (x2, y1, x2, y2); Line (x2, y2, x1, y2); Line (x1, y2, x1, y1);
It is linear. The highest power is 1 (x = x1, y = y1) so it is linear.
{3x +y =1 {x+y= -3
Y²-5Y+4=0 Y1=-(-5/2) - Square root of ((-5/2)²-4) Y1= 2.5 - Square root of 2.25 Y1 = 1 Y2=-(-5/2) + Square root of ((-5/2)²-4) Y2= 2.5 + Square root of 2.25 Y2 = 4 Y can be either 1 or 4
if we take the (x1,y1),(x2,y2) as coordinates the formula was (x-x1)/(x2-x1)=(y-y1)/(y2-y1)