Infinite. Here are some of them: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120.
12 and all its multiples.
Because 6 is a multiple of 2 and not of 4.
It's not. 4 is a multiple of 2. 2 is a factor of 4 because it can divide into 4 evenly with no remainder.
No. All it needs is one counter example to disprove: 6 is a multiple of 2 but NOT a multiple of 4.
Multiples of 6: 1,2,3,6 Multiples of 4: 1,2,4 Multiples of 3: 1,3
All multiples of 12 are also multiples of 6 and they all can be written as the sum of nine numbers.
2, 4, 6 All even numbers have even multiples.
Common multiples of 4 and 6 below 1000: Lowest common multiple of 4 and 6 is 12 All multiples of 12 number 83 from 12 upto 996 because 1000/12 equals 83....
The multiples of 4 are 4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76 and so on. The multiples of 6 are 6,12,18,24,30,36,42,48,52,58,62,66,72,78,84,90,96,102 and so on.
Well, honey, let me break it down for you. No, not all multiples of 9 are multiples of 6. See, multiples of 9 are numbers like 9, 18, 27, and so on, while multiples of 6 are numbers like 6, 12, 18, and so forth. So, while 18 is both a multiple of 9 and 6, not all multiples of 9 will be multiples of 6. Hope that clears things up for ya!
All the multiples of 24 are also multiples of 6.
Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72