Study guides

Q: What are the discontinuities of the function fx the quantity of x squared plus 5 x plus 6 all over 2 x plus 16?

Write your answer...

Submit

Related questions

This is a rational function; such functions have discontinuities when their DENOMINATOR (the bottom part) is equal to zero. Therefore, to find the discontinuities, simply solve the equation:Denominator = 0 Or specifically in this case: 2x + 16 = 0

It is x - y + 2 = 0

They are at x = -3 and x = -2.

It is the straight line through the points (0, -1) and (1, 0).

In such cases, there is usually a discontinuity when the denominator is zero. In other words, solve for:x + 2 = 0

True!

One over A squared or A to the negative 2.

-b + or - the square root on b squared - 4 times a times c over 2

((15xy2)/(x2+5x+6))/((5x2y)/(2x2+7x+3)) =(15xy2/5x2y)*(2x2+7x+3)/(x2+5x+6) =(3y/x)*(((2x+1)(x+3))/((x+2)(x+3) =(3y(2x+1))/(x(x+2)) =(6xy+3y)/(x2+2x)

2

Diverge!

2

0.4822530864

Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.

Just over 13.9 m2

9/36 squared is 1/16.

irdk

If a certain quality grows exponetially over time from an initial quantity at t0 which is 100, the quantity then grows by a factor of 2.5, the quantity at t5 will be 1250 from (2.5x100x5).

Since x represents a single number, and it is x squared over x squared, then it will be the same numbers in the numerator and the denominator, no matter what value you replace x with (as long as you replace both x's with the same number). Therefore the answer is 1, unless the value of x is 0, in which case it is undefined. eg: 5 squared / 5 squared = 1 100 squared / 100 squared = 1 Try it with your calculator.

It is -1 over x-squared.

.12244898

I think you are in the same class as I am. Let me know when you find out what they are, ha. I Googled fundamental properties and saw this. Here's what I got for the answer M over S=Velocity Kg X M S = Momentum M over S squared = Acceleration Kg x m over S squared = Force Kg x m squared over S squared = Energy Kg squared x m over S cubed = Power

-2a^2

pi squared

You have a situation of over supply, a "glut" and the price falls.