distance travelled
The displacement of an object from a velocity-time graph can be determined by finding the area under the velocity-time graph. For example, the displacement over a certain time interval can be calculated by finding the area of the corresponding region under the velocity-time graph. This can be done by calculating the area of the trapezoid or rectangle formed by the graph.
To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.
To find the position of an object from a velocity-time graph, you need to calculate the area under the curve of the graph. This area represents the displacement of the object.
Yes, a position-time graph can be created from a velocity-time graph by integrating the velocity values over time. By finding the area under the velocity-time curve, you can determine how the position of an object changes over time.
To find the position of an object from a velocity vs. time graph, you need to calculate the area under the velocity vs. time curve. This area represents the displacement of the object.
The area under an acceleration-time graph is equal to the object's velocity (not change in velocity).
No, displacement is the area under the velocity vs. time graph. The slope of a velocity vs. time graph represents acceleration.
Acceleration and displacement can be obtained from the velocity-time graph. Acceleration is the rate of change of velocity, which can be found as the slope of the velocity-time graph. Displacement can be determined by finding the area under the velocity-time graph, as it represents the distance traveled by an object.
From a velocity-time graph, you can calculate the acceleration by finding the slope of the graph at a certain point. The area under the graph represents the displacement of the object. You can also determine the direction of motion based on the slope of the graph (positive slope indicates motion in one direction, negative slope indicates motion in the opposite direction).
this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.
The area under the velocity time graph of an object is equal to the distance travelled by that object in that time. This is because displacement is the integral of velocity with respect to time so integrating velocity from time A to time B will give the displacement from time A to time B. ( Integrating is the same as calculating the area under the graph)
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.