Best Answer

this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.

More answers

Just by drawing a tangent to the curve at a given point and finding its slope we can find the acceleration at that instant.

Displacement is the area under the velocity-time graph. Refer to the related links for more information.

Q: How do you find the distance from a velocity time graph?

Write your answer...

Submit

Still have questions?

Continue Learning about Natural Sciences

Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.

To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.

To calculate distance from a velocity-time graph, you would find the area under the curve, as this represents the displacement or distance traveled. If the graph is above the time axis, calculate the area above the time axis, and if it dips below, calculate the area below the time axis. Summing these two areas will give you the total distance traveled.

Derivitives of a velocity : time graph are acceleration and distance travelled. Acceleration = velocity change / time ( slope of the graph ) a = (v - u) / t Distance travelled = average velocity between two time values * time (area under the graph) s = ((v - u) / 2) * t

Distance travelled from a velocity / time graph can be calculated from area under graph, say area under (v/t) graph from 0 - 1 seconds = distance travelled after 1 second, then do 0 - 2 seconds, 0 - 3 etc for set of data for distance / time graph

Related questions

Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.

Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.

To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.

In a velocity-time graph it will be the time axis (where velocity = 0). On a distance-time graph it will be a line parallel to the time axis: distance = some constant (which may be 0).

To calculate distance from a velocity-time graph, you would find the area under the curve, as this represents the displacement or distance traveled. If the graph is above the time axis, calculate the area above the time axis, and if it dips below, calculate the area below the time axis. Summing these two areas will give you the total distance traveled.

You can find the speed of an object from its distance-time graph by calculating the slope of the graph at a specific point. The slope represents the object's velocity at that particular moment. By determining the slope, you can find the speed of the object at that point on the graph.

distance = velocity x time so on the graph velocity is slope. If slope is zero (horizontal line) there is no motion

A straight line on a distance - time graph represents a "constant velocity".

Derivitives of a velocity : time graph are acceleration and distance travelled. Acceleration = velocity change / time ( slope of the graph ) a = (v - u) / t Distance travelled = average velocity between two time values * time (area under the graph) s = ((v - u) / 2) * t

Velocity.

Distance.

Distance travelled (displacement). Distance = velocity/time, so velocity * time = distance. Likewise, x = dv/dt so the integral of velocity with respect to time (area under the graph) is x, the distance travelled.