this time is basically the instant when an object has a particular velocity(instantaneous velocity). so on the graph draw a line from the particular value of the velocity and then draw a vertical line on time axis to find the time for that velocity.
Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.
To find the starting point of a distance vs time graph from a velocity vs time graph and a function, you would integrate the velocity function to find the displacement function. The starting point of the distance vs time graph corresponds to the initial displacement obtained from the displaced function.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.
Yes, a position-time graph can be created from a velocity-time graph by integrating the velocity values over time. By finding the area under the velocity-time curve, you can determine how the position of an object changes over time.
Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.
Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
To find the starting point of a distance vs time graph from a velocity vs time graph and a function, you would integrate the velocity function to find the displacement function. The starting point of the distance vs time graph corresponds to the initial displacement obtained from the displaced function.
you can't....it's merely impossible! Assuming it is a graph of velocity vs time, it's not impossible, it's simple. Average velocity is total distance divided by total time. The total time is the difference between finish and start times, and the distance is the area under the graph between the graph and the time axis.
In a velocity-time graph it will be the time axis (where velocity = 0). On a distance-time graph it will be a line parallel to the time axis: distance = some constant (which may be 0).
The area between the graph and the x-axis is the distance moved. If the velocity is constant the v vs t graph is a straight horizontal line. The shape of the area under the graph is a rectangle. For constant velocity, distance = V * time. Time is the x-axis and velocity is the y-axis. If the object is accelerating, the velocity is increasing at a constant rate. The graph is a line whose slope equals the acceleration. The shape of the graph is a triangle. The area under the graph is ½ * base * height. The base is time, and the height is the velocity. If the initial velocity is 0, the average velocity is final velocity ÷ 2. Distance = average velocity * time. Distance = (final velocity ÷ 2) * time, time is on the x-axis, and velocity is on the y-axis. (final velocity ÷ 2) * time = ½ time * final velocity ...½ base * height = ½ time * final velocity Area under graph = distance moved Most velocity graphs are horizontal lines or sloping lines.
A straight line on a distance - time graph represents a "constant velocity".
distance = velocity x time so on the graph velocity is slope. If slope is zero (horizontal line) there is no motion
You can find the speed of an object from its distance-time graph by calculating the slope of the graph at a specific point. The slope represents the object's velocity at that particular moment. By determining the slope, you can find the speed of the object at that point on the graph.
Velocity.
Distance.
Yes, a position-time graph can be created from a velocity-time graph by integrating the velocity values over time. By finding the area under the velocity-time curve, you can determine how the position of an object changes over time.