Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.
To find the starting point of a distance vs time graph from a velocity vs time graph and a function, you would integrate the velocity function to find the displacement function. The starting point of the distance vs time graph corresponds to the initial displacement obtained from the displaced function.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
To calculate distance from a velocity-time graph, you would find the area under the curve, as this represents the displacement or distance traveled. If the graph is above the time axis, calculate the area above the time axis, and if it dips below, calculate the area below the time axis. Summing these two areas will give you the total distance traveled.
Yes, a position-time graph can be created from a velocity-time graph by integrating the velocity values over time. By finding the area under the velocity-time curve, you can determine how the position of an object changes over time.
Two different distance-time graphs have matching velocity-time graphs when the slope of the distance-time graph represents the velocity in the velocity-time graph, as velocity is the derivative of distance with respect to time. This means that the steeper the distance-time graph, the greater the velocity on the velocity-time graph at that point.
Simply put, a velocity time graph is velocity (m/s) in the Y coordinate and time (s) in the X and a position time graph is distance (m) in the Y coordinate and time (s) in the X if you where to find the slope of a tangent on a distance time graph, it would give you the velocity whereas the slope on a velocity time graph would give you the acceleration.
To find the starting point of a distance vs time graph from a velocity vs time graph and a function, you would integrate the velocity function to find the displacement function. The starting point of the distance vs time graph corresponds to the initial displacement obtained from the displaced function.
To go from a position graph to a velocity graph, you can calculate the slope of the position graph at each point. The slope at any given point on a position vs. time graph represents the velocity at that specific time. Therefore, the velocity graph would be a plot of the slopes at each point on the position graph.
In a velocity-time graph it will be the time axis (where velocity = 0). On a distance-time graph it will be a line parallel to the time axis: distance = some constant (which may be 0).
To calculate distance from a velocity-time graph, you would find the area under the curve, as this represents the displacement or distance traveled. If the graph is above the time axis, calculate the area above the time axis, and if it dips below, calculate the area below the time axis. Summing these two areas will give you the total distance traveled.
A straight line on a distance - time graph represents a "constant velocity".
distance = velocity x time so on the graph velocity is slope. If slope is zero (horizontal line) there is no motion
You can find the speed of an object from its distance-time graph by calculating the slope of the graph at a specific point. The slope represents the object's velocity at that particular moment. By determining the slope, you can find the speed of the object at that point on the graph.
Distance.
Velocity.
Yes, a position-time graph can be created from a velocity-time graph by integrating the velocity values over time. By finding the area under the velocity-time curve, you can determine how the position of an object changes over time.