If something is greater than, less than or different than the second thing.
Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.Substitute the values of the variables into the inequality. If the inequality is true then they are a solution, if not, they are not.
That will all depend on what the question was!
In a linear inequality the variable is only present raised to the first power (which is usually not explicitly shown). In a quadratic the square of the variable is present (or implied). The square can be implied in an inequality such as x + 1/x < 6 (x not 0) This is equivalent to x2 - 6x + 1 < 0
Good question.Think about lxl > 3: x can be >3 or goes with or. < goes with and.
If the absolute value inequality is of the form where the absolute value of the difference between a variable (X) and some constant (a) is compared to another constant (b) eg |X - a| compared with b, then if the comparison is < or ≤, the compound inequality is a double inequality of the form c < X < d (or ≤), and if the comparison is > or ≥, the compound inequality is a disjoint inequality of the form X < c or X > d (or including the equals). In both cases, c = b - a, d = b + a (>c)
"x281" is an expression, not an inequality. An inequality is supposed to have an inequality sign, such as "<" or ">".
-3
There is no inequality since there is no inequality sign.
algebraic inequality, is an inequality that contains at least one variable.
The inequality is maintained with the direction of the inequality unchanged.
Inequality is a noun.
There is no inequality in the question.