To determine if three numbers can be the side lengths of a triangle, they must satisfy the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. For example, the set of numbers 3, 4, and 5 satisfies this criterion, as 3 + 4 > 5, 3 + 5 > 4, and 4 + 5 > 3. Thus, 3, 4, and 5 could be the side lengths of a triangle.
To represent the lengths of the sides of a triangle, the numbers must satisfy the triangle inequality theorem. This means that the sum of the lengths of any two sides must be greater than the length of the third side. For example, the set of numbers 3, 4, and 5 can represent the sides of a triangle because 3 + 4 > 5, 3 + 5 > 4, and 4 + 5 > 3.
No because the given sides do not comply with Pythagoras' theorem for a right angle triangle.
In a 30-60-90 triangle, the lengths of the sides follow a specific ratio: the side opposite the 30-degree angle is half the length of the hypotenuse, and the side opposite the 60-degree angle is ( \sqrt{3} ) times the length of the shorter side. For example, if the hypotenuse is 2, the side lengths could be 1 (opposite the 30-degree angle) and ( \sqrt{3} ) (opposite the 60-degree angle). Therefore, a valid set of side lengths could be 1, ( \sqrt{3} ), and 2.
To determine if you can make more than one triangle with a given set of side lengths, you can use the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. If the side lengths meet this condition, you can form a triangle, but if the side lengths are the same (like in the case of an equilateral triangle), only one unique triangle can be formed. Additionally, if the angles are not specified and the side lengths allow for different arrangements, multiple triangles may be possible.
If any of its 2 sides is not greater than its third in length then a triangle can't be formed.
To determine if three numbers can be the side lengths of a triangle, they must satisfy the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. For example, the set of numbers 3, 4, and 5 satisfies this criterion, as 3 + 4 > 5, 3 + 5 > 4, and 4 + 5 > 3. Thus, 3, 4, and 5 could be the side lengths of a triangle.
1.5m
To represent the lengths of the sides of a triangle, the numbers must satisfy the triangle inequality theorem. This means that the sum of the lengths of any two sides must be greater than the length of the third side. For example, the set of numbers 3, 4, and 5 can represent the sides of a triangle because 3 + 4 > 5, 3 + 5 > 4, and 4 + 5 > 3.
No because the given sides do not comply with Pythagoras' theorem for a right angle triangle.
They are Pythagorean triples
Those ones, there!
Infinitely many. The smallest side of a triangle can have infinitely many possible lengths.
3, 4 and 5 units of length
11, 4, 8
In a 30-60-90 triangle, the lengths of the sides follow a specific ratio: the side opposite the 30-degree angle is half the length of the hypotenuse, and the side opposite the 60-degree angle is ( \sqrt{3} ) times the length of the shorter side. For example, if the hypotenuse is 2, the side lengths could be 1 (opposite the 30-degree angle) and ( \sqrt{3} ) (opposite the 60-degree angle). Therefore, a valid set of side lengths could be 1, ( \sqrt{3} ), and 2.
To determine if you can make more than one triangle with a given set of side lengths, you can use the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. If the side lengths meet this condition, you can form a triangle, but if the side lengths are the same (like in the case of an equilateral triangle), only one unique triangle can be formed. Additionally, if the angles are not specified and the side lengths allow for different arrangements, multiple triangles may be possible.