Q: What is mapping cardinality?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

cardinality is the number of element in a set :) * * * * * The question did not ask what cardinality was but how to find it! For a simple set with a finite number of elements it is possible to count the number of distinct elements - even though it may be time consuming. For other finite sets, such as symmetry groups, it is not always easy to identify distinct elements before counting how many there are. However, there are theoretical methods that will help in such cases. The cardinality of an infinite group is Aleph-Null if it there is a 1-to-1 mapping with the set of integers. The cardinality is Aleph-One if the mapping is with the real numbers. If you go beyond that, you will have studied a lot more about cardinality and will not need to ask such a question!

Of course not.Number if irrational numbers is larger than number of rational numbers.To be more exact: There is no one-to-one mapping of set of rational numbersto the set of irrational numbers. If there would be such a mapping, their cardinality(see Cardinality ) would be same.In reality, rational numbers are countable (cardinality alef0)real numbers, as well as irrational numbers are not countable (cardinality alef1).These are topics inwikipedia.org/wiki/Transfinite_numbertheory

It's the number of mappings, *or* he number of available objects to map something to, *or*...See also http://en.wikipedia.org/wiki/Cardinality

by counting the number of elements in a set. * * * * * For a simple set with a finite number of elements it is possible to count the number of distinct elements - even though it may be time consuming. For other finite sets, such as symmetry groups, it is not always easy to identify distinct elements before counting how many there are. However, there are theoretical methods that will help in such cases. The cardinality of an infinite group is Aleph-Null if it there is a 1-to-1 mapping with the set of integers. The cardinality is Aleph-One if the mapping is with the real numbers. If you go beyond that, you will have studied a lot more about cardinality and will not need to ask such a question!

The cardinality of [0,1) is equal to the cardinality of (0,1) which has the same cardinality as the real numbers.

Related questions

Two sets are equivalent if they have the same cardinality. For finite sets this means that they must have the same number of distinct elements. For infinite sets, equal cardinality means that there must be a one-to-one mapping from one set to the other. This can lead to some counter-intuitive results. For example, the cardinality of the set of integers is the same as the cardinality of the set of even integers although the second set is a proper subset of the first. The relevant mapping is x -> 2x.

cardinality is the number of element in a set :) * * * * * The question did not ask what cardinality was but how to find it! For a simple set with a finite number of elements it is possible to count the number of distinct elements - even though it may be time consuming. For other finite sets, such as symmetry groups, it is not always easy to identify distinct elements before counting how many there are. However, there are theoretical methods that will help in such cases. The cardinality of an infinite group is Aleph-Null if it there is a 1-to-1 mapping with the set of integers. The cardinality is Aleph-One if the mapping is with the real numbers. If you go beyond that, you will have studied a lot more about cardinality and will not need to ask such a question!

Of course not.Number if irrational numbers is larger than number of rational numbers.To be more exact: There is no one-to-one mapping of set of rational numbersto the set of irrational numbers. If there would be such a mapping, their cardinality(see Cardinality ) would be same.In reality, rational numbers are countable (cardinality alef0)real numbers, as well as irrational numbers are not countable (cardinality alef1).These are topics inwikipedia.org/wiki/Transfinite_numbertheory

It's the number of mappings, *or* he number of available objects to map something to, *or*...See also http://en.wikipedia.org/wiki/Cardinality

by counting the number of elements in a set. * * * * * For a simple set with a finite number of elements it is possible to count the number of distinct elements - even though it may be time consuming. For other finite sets, such as symmetry groups, it is not always easy to identify distinct elements before counting how many there are. However, there are theoretical methods that will help in such cases. The cardinality of an infinite group is Aleph-Null if it there is a 1-to-1 mapping with the set of integers. The cardinality is Aleph-One if the mapping is with the real numbers. If you go beyond that, you will have studied a lot more about cardinality and will not need to ask such a question!

To calculate the cardinality of a set you need to establish a 1-to-1 mapping from the set onto Z, the set of counting numbers.

The cardinality of [0,1) is equal to the cardinality of (0,1) which has the same cardinality as the real numbers.

Cardinality is the number of attributes in the table.

There are not more tens. The cardinality ("count") of the set of tens is exactly the same as the cardinality of the set of hundreds. The mapping f(x) = 10x where x is a multiple of 10 is bijective. Consequently, its domain and range are of the same "size". The words "count" and "size" are in quotation marks because the relevant values are infinite.

The cardinality of 15 is equal to the number of elements in the set. Since 15 is only one number, its cardinality is 1.

The cardinality of a finite set is the number of elements in the set. The cardinality of infinite sets is infinity but - if you really want to go into it - reflects a measure of the degree of...

The cardinality ratio specifies the number of relationship instances that an entity can participate in.