12.85
12.85 is the pOH.
12.85
12.85
12.85
The pOH of a solution with an OH- concentration of 1.4 x 10^-13 M is 1.85. This is calculated by taking the negative logarithm of the OH- concentration, which is -log(1.4 x 10^-13) = 12.85, then subtracting it from 14 to find the pOH: 14 - 12.85 = 1.85.
The pH of a 0.0670 M KOH solution can be calculated using the formula pH = 14 - pOH. Since KOH dissociates completely in water to produce OH- ions, the pOH can be found by taking the negative logarithm of the hydroxide ion concentration (0.0670 M in this case). Then, pH = 14 - pOH, allowing you to determine the solution's pH.
The hydroxide ion concentration can be calculated using the formula: ( [\text{OH}^-] = 10^{-\text{pOH}} ). Plugging in 4.5 for pOH, we get ( [\text{OH}^-] = 10^{-4.5} = 3.16 \times 10^{-5} , \text{M} ).
For a 0.1 M HCl solution, all of the HCl molecules will dissociate into H+ and Cl- ions, resulting in a concentration of 0.1 M for H+ ions. Since pH = -log[H+], the pH of the solution is 1. The pOH can be calculated by subtracting the pH from 14, so the pOH would be 13.
To calculate the concentration of hydroxide ions (OH-) from a given pH value, you can use the formula: [OH-] = 10^(-pH). For a pH of 1.12, the concentration of hydroxide ions would be [OH-] = 10^(-1.12) = 0.079 moles per liter.
Alef Poh-ji was born on 1987-04-13.
MW NaOH is 23+16+1 = 40. 4.5g in 750ml is 6.0g in 1L. Molarity is 6/40 = 0.15 OH- concentration is 0.15, pOH is -log100.15 = 0.82 H+ concentration is 10-14/0.15 = 6.67x10-13 pH is -log10 6.67x10-13 = 12.18
Molar concentration in both base solutions NH3 and NaOH is assumed to be (equal) 0.1 mol Base/LWeak base like ammonia (NH3) with pKb = 9.2 and concentration (assumed) Cb = 0.1 (mol/L)pOH = 0.5*[pKb + pCb] = 0.5*[9.2 + 1.0] = 5.1 , hence [OH-] = 7.9*10-6pH = 14 - pOH = 8.9 hence [H+]= 1.3*10-9Strong base hydroxide (like from NaOH) with concentration (equally assumed) Cb = 0.1 (mol/L)pOH = 1.0 because [OH-] = 0.1pH = 13.0 hence [H+]= 1.0*10-13